#Gráfica 1
#install.packages("reshape")
#Se necesita el paquete pwr
if(!require(pwr)){install.packages("pwr");library("pwr")}
## Cargando paquete requerido: pwr
# t-TEST
# Se aplicará power.t.test del paquete stats (ya en R). Calcula la potencia de la prueba t de una o dos muestras, o determina los parámetros para obtener un valor particular de la potencia.
d<-seq(.1,2,by=.1) # 20 tamaños de los efectos
n<-1:150 # Tamaños muestrales
t.test.power.effect <-as.data.frame(do.call("cbind",lapply(1:length(d),function(i)
{
sapply(1:length(n),function(j)
{
power.t.test(n=n[j],d=d[i],sig.level=0.05,power=NULL,type= "two.sample")$power
})
})))
# Si algunas potencias no se pueden calcular, se ajustan a cero:
t.test.power.effect[is.na(t.test.power.effect)] <- 0
colnames(t.test.power.effect)<-paste (d,"effect size")
#Graficando los resultados
prueba <-t.test.power.effect #data frame de 150 X 20 (para graficar)
cuts_num<-c(2,5,8) # cortes
#Cortes basados en: Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
cuts_cat<-c("pequeño","medio","grande")
columnas <- 1:ncol(prueba) #Lista de los valores 1:20
color_linea<-rainbow(length(columnas), alpha=.5) # Lista de 20 colores
grosor_linea=3 # Grosor de la línea
#Para el tipo de línea: (“blank”, “solid”, “dashed”, “dotted”, “dotdash”, “longdash”, “twodash”) ó (0, 1, 2, 3, 4, 5, 6).
#Note que lty = “solid” is idéntica a lty=1.
tipo_linea <- rep(1,length(color_linea)) #Repetir length(color)=20 veces el 1
tipo_linea[cuts_num]<-c(2:(length(cuts_num)+1)) #Asignar 2, 3, 4 en las posiciones 2, 5, 8 de tipo_linea
#Resaltar posiciones importantes
cuts_num<-c(2,5,8) # Cortes
#Cortes basados en: Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
cuts_cat<-c("pequeño","medio","grande")
color_linea[cuts_num]<-c("black")
efecto <- d # Listado de los 20 valores de 20
efecto[cuts_num] <- cuts_cat #Reemplazar en "efecto" las posiciones cuts_num (2, 5, 8) por las categorías de cuts_cat
par(fig=c(0,.8,0,1),new=TRUE)
## Warning in par(fig = c(0, 0.8, 0, 1), new = TRUE): llamada par(new=TRUE) sin
## gráfico
#Gráfica
plot(1, type="n", #no produce puntos ni líneas
frame.plot=FALSE,
xlab="Tamaño muestral", ylab="Potencia",
xlim=c(1,150), ylim=c(0,1),
main="t-Test", axes = FALSE)
#Editando los ejes, grid, etc.
abline(v=seq(0,150,by=10), col = "lightgray", lty = "dotted") # Grid vertical
abline(h=seq(0,1,by=.05), col = "lightgray", lty = "dotted") # Grid horizontal
axis(1,seq(0,150,by=10)) # Números en eje X
axis(2,seq(0,1,by=.05)) # Números en eje Y
#Plot de las lineas
#columnas <- 1:ncol(prueba) # lista de los valores 1:20
for(i in 1:length(columnas)) #length(columnas)=20
{
lines(1:150,
#prueba (data frame de 150 X 20, para graficar)
#columna <- 1:ncol(prueba) listado de valores 1:20
prueba[,columnas[i]], #filtrar "prueba" para valor de columna
col=color_linea[i], #color_linea[cuts_num]<-c("black")
lwd=grosor_linea, #grosor de cada linea
lty=tipo_linea[i] #tipo_linea[cuts_num]<-c(2:(length(cuts_num)+1))
)
}
#Leyendas
par(fig=c(.65,1,0,1),new=TRUE)
plot.new()
legend("top",legend=efecto, col=color_linea, lwd=3, lty=tipo_linea, title="Tamaño efecto",
bty="n" #Opciones: o (complete box), n (no box), 7, L, C, U
)
#Gráfica 2
#plot using ggplot2
library(ggplot2)
library(reshape)
library(plotly)
##
## Adjuntando el paquete: 'plotly'
## The following object is masked from 'package:reshape':
##
## rename
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
obj <- cbind(size=1:150, prueba) #Agregando el tamaño al data frame "prueba"
# Usar melt y unir con "effect" para el mapeo
#El data frame "obj" se reconstruye con respecto al parámetro id="size".
melted <- cbind(reshape::melt(obj, id="size"), effect=rep(d,each=150))
p<- ggplot(data=melted, aes(x=size, y=value, color=as.factor(effect))) +
geom_line(size=0.7,alpha=.5) +
ylab("Potencia") +
xlab("Tamaño muestral") +
ggtitle("t-Test")+
theme_bw() +
#guides(fill=guide_legend(title="Efecto"))
#scale_fill_discrete(name = "Efecto")
#labs(fill='Efecto')
#scale_fill_manual("Efecto"#,values=c("orange","red")
scale_color_discrete(name = "Tamaño del efecto")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# Interactive plot
plotly::ggplotly(p)
#Gráfica 1
#install.packages("reshape")
#Se necesita el paquete pwr
if(!require(pwr)){install.packages("pwr");library("pwr")}
# t-TEST
# Se aplicará power.t.test del paquete stats (ya en R). Calcula la potencia de la prueba t de una o dos muestras, o determina los parámetros para obtener un valor particular de la potencia.
d<-seq(.1,2,by=.1) # 20 tamaños de los efectos
n<-1:150 # Tamaños muestrales
t.test.power.effect <-as.data.frame(do.call("cbind",lapply(1:length(d),function(i)
{
sapply(1:length(n),function(j)
{
power.t.test(n=n[j],d=d[i],sig.level=0.2,power=NULL,type= "two.sample")$power
})
})))
# Si algunas potencias no se pueden calcular, se ajustan a cero:
t.test.power.effect[is.na(t.test.power.effect)] <- 0
colnames(t.test.power.effect)<-paste (d,"effect size")
#Graficando los resultados
prueba <-t.test.power.effect #data frame de 150 X 20 (para graficar)
cuts_num<-c(2,5,8) # cortes
#Cortes basados en: Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
cuts_cat<-c("pequeño","medio","grande")
columnas <- 1:ncol(prueba) #Lista de los valores 1:20
color_linea<-rainbow(length(columnas), alpha=.5) # Lista de 20 colores
grosor_linea=3 # Grosor de la línea
#Para el tipo de línea: (“blank”, “solid”, “dashed”, “dotted”, “dotdash”, “longdash”, “twodash”) ó (0, 1, 2, 3, 4, 5, 6).
#Note que lty = “solid” is idéntica a lty=1.
tipo_linea <- rep(1,length(color_linea)) #Repetir length(color)=20 veces el 1
tipo_linea[cuts_num]<-c(2:(length(cuts_num)+1)) #Asignar 2, 3, 4 en las posiciones 2, 5, 8 de tipo_linea
#Resaltar posiciones importantes
cuts_num<-c(2,5,8) # Cortes
#Cortes basados en: Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
cuts_cat<-c("pequeño","medio","grande")
color_linea[cuts_num]<-c("black")
efecto <- d # Listado de los 20 valores de 20
efecto[cuts_num] <- cuts_cat #Reemplazar en "efecto" las posiciones cuts_num (2, 5, 8) por las categorías de cuts_cat
par(fig=c(0,.8,0,1),new=TRUE)
## Warning in par(fig = c(0, 0.8, 0, 1), new = TRUE): llamada par(new=TRUE) sin
## gráfico
#Gráfica
plot(1, type="n", #no produce puntos ni líneas
frame.plot=FALSE,
xlab="Tamaño muestral", ylab="Potencia",
xlim=c(1,150), ylim=c(0,1),
main="t-Test", axes = FALSE)
#Editando los ejes, grid, etc.
abline(v=seq(0,150,by=10), col = "lightgray", lty = "dotted") # Grid vertical
abline(h=seq(0,1,by=.05), col = "lightgray", lty = "dotted") # Grid horizontal
axis(1,seq(0,150,by=10)) # Números en eje X
axis(2,seq(0,1,by=.05)) # Números en eje Y
#Plot de las lineas
#columnas <- 1:ncol(prueba) # lista de los valores 1:20
for(i in 1:length(columnas)) #length(columnas)=20
{
lines(1:150,
#prueba (data frame de 150 X 20, para graficar)
#columna <- 1:ncol(prueba) listado de valores 1:20
prueba[,columnas[i]], #filtrar "prueba" para valor de columna
col=color_linea[i], #color_linea[cuts_num]<-c("black")
lwd=grosor_linea, #grosor de cada linea
lty=tipo_linea[i] #tipo_linea[cuts_num]<-c(2:(length(cuts_num)+1))
)
}
#Leyendas
par(fig=c(.65,1,0,1),new=TRUE)
plot.new()
legend("top",legend=efecto, col=color_linea, lwd=3, lty=tipo_linea, title="Tamaño efecto",
bty="n" #Opciones: o (complete box), n (no box), 7, L, C, U
)
#Gráfica 2
#plot using ggplot2
library(ggplot2)
library(reshape)
library(plotly)
obj <- cbind(size=1:150, prueba) #Agregando el tamaño al data frame "prueba"
# Usar melt y unir con "effect" para el mapeo
#El data frame "obj" se reconstruye con respecto al parámetro id="size".
melted <- cbind(reshape::melt(obj, id="size"), effect=rep(d,each=150))
p<- ggplot(data=melted, aes(x=size, y=value, color=as.factor(effect))) +
geom_line(size=0.7,alpha=.5) +
ylab("Potencia") +
xlab("Tamaño muestral") +
ggtitle("t-Test")+
theme_bw() +
#guides(fill=guide_legend(title="Efecto"))
#scale_fill_discrete(name = "Efecto")
#labs(fill='Efecto')
#scale_fill_manual("Efecto"#,values=c("orange","red")
scale_color_discrete(name = "Tamaño del efecto")
# Interactive plot
plotly::ggplotly(p)
En la variación de la significancia de 0.05 pasando hasta 0.3 se puede observar que entre mayor sea la potencia o propabilida de rechazar la Ho es mayor, por lo que para muestras de tamaño del efectos grandes la probabilidad tiende a cero sin aumentar el numero de muestras, en resumen si el tamaño del efecto es grande, el tamaño de la muestra deberia ser menor.
Significancia d = 0.05
#library(dplyr)
library(tidyr) #Para manipulación de datos: separate, gather, spread
##
## Adjuntando el paquete: 'tidyr'
## The following objects are masked from 'package:reshape':
##
## expand, smiths
#library(ggplot2) #
#library(plotly) #Para curvas de potencias interactivas
#library(pwr) #Para cálculo de las potencias
#Generar cálculos de las potencias con la funcion pwr.t2n.test.
#Es un t-test para 2 muestras con tamaños diferentes
#Aquí: d es el tamaño del efecto, Power= potencia de la prueba= 1-beta):
#pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
ptab <- cbind(NULL, NULL)
for (i in seq(0,1, length.out = 200)){
pwrt1 <- pwr.t2n.test(n1 = 28, n2 = 1406,
sig.level = 0.05, power = NULL,
d = i, alternative="two.sided")
pwrt2 <- pwr.t2n.test(n1 = 144, n2 = 1290,
sig.level = 0.05, power = NULL,
d = i, alternative="two.sided")
pwrt3 <- pwr.t2n.test(n1 = 287, n2 = 1147,
sig.level = 0.05, power = NULL,
d = i, alternative="two.sided")
pwrt4 <- pwr.t2n.test(n1 = 430, n2 = 1004,
sig.level = 0.05, power = NULL,
d = i, alternative="two.sided")
pwrt5 <- pwr.t2n.test(n1 = 574, n2 = 860,
sig.level = 0.05, power = NULL,
d = i, alternative="two.sided")
pwrt6 <- pwr.t2n.test(n1 = 717, n2 = 717,
sig.level = 0.05, power = NULL,
d = i, alternative="two.sided")
#Es un data frame de tamaño 200 por 12:
ptab <- rbind(ptab, cbind(pwrt1$d, pwrt1$power,
pwrt2$d, pwrt2$power,
pwrt3$d, pwrt3$power,
pwrt4$d, pwrt4$power,
pwrt5$d, pwrt5$power,
pwrt6$d, pwrt6$power))
}
#Es un data frame de tamaño 200 por 13 (la 1ra columna es ID)
ptab <- cbind(seq_len(nrow(ptab)), ptab)
colnames(ptab) <- c("id","n1=28, n2=1406;effect size","n1=28, n2=1406;power",
"n1=144, n2=1290;effect size","n1=144, n2=1290;power",
"n1=287, n2=1147;effect size","n1=287, n2=1147;power",
"n1=430, n2=1004;effect size","n1=430, n2=1004;power",
"n1=574, n2=860;effect size","n1=574, n2=860;power",
"n1=717, n2=717;effect size","n1=717, n2=717;power")
#gather se usa para "reunir" un par key-value. En este caso, en 3 columnas: ID, variables y respuestas numericas
temp1 <- ptab %>% as.data.frame() %>% pivot_longer(cols = 2:13, names_to = "name", values_to = "val") #gather(key = name, value = val, 2:13)
#Separar celdas en columnas, de acuerdo a una condición (sep=). En este caso, se separó "name" en dos columnas: samples y pruebas
temp2 <- temp1 %>% separate(col = name, into = c("samples", "pruebas"), sep = ";")
#La función spread hace lo opuesto a gather. Son funciones complementarias.
#Es decir, si al resultado de aplicar la función spread le aplicamos la función gather llegamos al dataset original.
temp3 <- temp2 %>% spread(key = pruebas, value = val)
#Convertir la variable "samples" a factor.
temp3$samples <- factor(temp3$samples,
levels = c("n1=28, n2=1406", "n1=144, n2=1290",
"n1=287, n2=1147", "n1=430, n2=1004",
"n1=574, n2=860", "n1=717, n2=717")
)
#Gráfica
p<- ggplot(temp3, aes(x = `effect size`, y = power, color = samples)) +
geom_line(size=1) +
theme_bw() +
theme(axis.text=element_text(size=10),
axis.title=element_text(size=10),
legend.text=element_text(size=10)) +
geom_vline(xintercept = .54, linetype = 2) +
geom_hline(yintercept = 0.80, linetype = 2)+
labs(x="Effect size", y="Power") +
scale_color_discrete(name = "Sampling size")
# so simple to make interactive plots
plotly::ggplotly(p)
Significancia d = 0.2
#library(dplyr)
library(tidyr) #Para manipulación de datos: separate, gather, spread
#library(ggplot2) #
#library(plotly) #Para curvas de potencias interactivas
#library(pwr) #Para cálculo de las potencias
#Generar cálculos de las potencias con la funcion pwr.t2n.test.
#Es un t-test para 2 muestras con tamaños diferentes
#Aquí: d es el tamaño del efecto, Power= potencia de la prueba= 1-beta):
#pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
ptab <- cbind(NULL, NULL)
for (i in seq(0,1, length.out = 200)){
pwrt1 <- pwr.t2n.test(n1 = 28, n2 = 1406,
sig.level = 0.2, power = NULL,
d = i, alternative="two.sided")
pwrt2 <- pwr.t2n.test(n1 = 144, n2 = 1290,
sig.level = 0.2, power = NULL,
d = i, alternative="two.sided")
pwrt3 <- pwr.t2n.test(n1 = 287, n2 = 1147,
sig.level = 0.2, power = NULL,
d = i, alternative="two.sided")
pwrt4 <- pwr.t2n.test(n1 = 430, n2 = 1004,
sig.level = 0.2, power = NULL,
d = i, alternative="two.sided")
pwrt5 <- pwr.t2n.test(n1 = 574, n2 = 860,
sig.level = 0.2, power = NULL,
d = i, alternative="two.sided")
pwrt6 <- pwr.t2n.test(n1 = 717, n2 = 717,
sig.level = 0.2, power = NULL,
d = i, alternative="two.sided")
#Es un data frame de tamaño 200 por 12:
ptab <- rbind(ptab, cbind(pwrt1$d, pwrt1$power,
pwrt2$d, pwrt2$power,
pwrt3$d, pwrt3$power,
pwrt4$d, pwrt4$power,
pwrt5$d, pwrt5$power,
pwrt6$d, pwrt6$power))
}
#Es un data frame de tamaño 200 por 13 (la 1ra columna es ID)
ptab <- cbind(seq_len(nrow(ptab)), ptab)
colnames(ptab) <- c("id","n1=28, n2=1406;effect size","n1=28, n2=1406;power",
"n1=144, n2=1290;effect size","n1=144, n2=1290;power",
"n1=287, n2=1147;effect size","n1=287, n2=1147;power",
"n1=430, n2=1004;effect size","n1=430, n2=1004;power",
"n1=574, n2=860;effect size","n1=574, n2=860;power",
"n1=717, n2=717;effect size","n1=717, n2=717;power")
#gather se usa para "reunir" un par key-value. En este caso, en 3 columnas: ID, variables y respuestas numericas
temp1 <- ptab %>% as.data.frame() %>% pivot_longer(cols = 2:13, names_to = "name", values_to = "val") #gather(key = name, value = val, 2:13)
#Separar celdas en columnas, de acuerdo a una condición (sep=). En este caso, se separó "name" en dos columnas: samples y pruebas
temp2 <- temp1 %>% separate(col = name, into = c("samples", "pruebas"), sep = ";")
#La función spread hace lo opuesto a gather. Son funciones complementarias.
#Es decir, si al resultado de aplicar la función spread le aplicamos la función gather llegamos al dataset original.
temp3 <- temp2 %>% spread(key = pruebas, value = val)
#Convertir la variable "samples" a factor.
temp3$samples <- factor(temp3$samples,
levels = c("n1=28, n2=1406", "n1=144, n2=1290",
"n1=287, n2=1147", "n1=430, n2=1004",
"n1=574, n2=860", "n1=717, n2=717")
)
#Gráfica
p<- ggplot(temp3, aes(x = `effect size`, y = power, color = samples)) +
geom_line(size=1) +
theme_bw() +
theme(axis.text=element_text(size=10),
axis.title=element_text(size=10),
legend.text=element_text(size=10)) +
geom_vline(xintercept = .54, linetype = 2) +
geom_hline(yintercept = 0.80, linetype = 2)+
labs(x="Effect size", y="Power") +
scale_color_discrete(name = "Sampling size")
# so simple to make interactive plots
plotly::ggplotly(p)
Significancia d = 0.3
#library(dplyr)
library(tidyr) #Para manipulación de datos: separate, gather, spread
#library(ggplot2) #
#library(plotly) #Para curvas de potencias interactivas
#library(pwr) #Para cálculo de las potencias
#Generar cálculos de las potencias con la funcion pwr.t2n.test.
#Es un t-test para 2 muestras con tamaños diferentes
#Aquí: d es el tamaño del efecto, Power= potencia de la prueba= 1-beta):
#pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
ptab <- cbind(NULL, NULL)
for (i in seq(0,1, length.out = 200)){
pwrt1 <- pwr.t2n.test(n1 = 28, n2 = 1406,
sig.level = 0.3, power = NULL,
d = i, alternative="two.sided")
pwrt2 <- pwr.t2n.test(n1 = 144, n2 = 1290,
sig.level = 0.3, power = NULL,
d = i, alternative="two.sided")
pwrt3 <- pwr.t2n.test(n1 = 287, n2 = 1147,
sig.level = 0.3, power = NULL,
d = i, alternative="two.sided")
pwrt4 <- pwr.t2n.test(n1 = 430, n2 = 1004,
sig.level = 0.3, power = NULL,
d = i, alternative="two.sided")
pwrt5 <- pwr.t2n.test(n1 = 574, n2 = 860,
sig.level = 0.3, power = NULL,
d = i, alternative="two.sided")
pwrt6 <- pwr.t2n.test(n1 = 717, n2 = 717,
sig.level = 0.3, power = NULL,
d = i, alternative="two.sided")
#Es un data frame de tamaño 200 por 12:
ptab <- rbind(ptab, cbind(pwrt1$d, pwrt1$power,
pwrt2$d, pwrt2$power,
pwrt3$d, pwrt3$power,
pwrt4$d, pwrt4$power,
pwrt5$d, pwrt5$power,
pwrt6$d, pwrt6$power))
}
#Es un data frame de tamaño 200 por 13 (la 1ra columna es ID)
ptab <- cbind(seq_len(nrow(ptab)), ptab)
colnames(ptab) <- c("id","n1=28, n2=1406;effect size","n1=28, n2=1406;power",
"n1=144, n2=1290;effect size","n1=144, n2=1290;power",
"n1=287, n2=1147;effect size","n1=287, n2=1147;power",
"n1=430, n2=1004;effect size","n1=430, n2=1004;power",
"n1=574, n2=860;effect size","n1=574, n2=860;power",
"n1=717, n2=717;effect size","n1=717, n2=717;power")
#gather se usa para "reunir" un par key-value. En este caso, en 3 columnas: ID, variables y respuestas numericas
temp1 <- ptab %>% as.data.frame() %>% pivot_longer(cols = 2:13, names_to = "name", values_to = "val") #gather(key = name, value = val, 2:13)
#Separar celdas en columnas, de acuerdo a una condición (sep=). En este caso, se separó "name" en dos columnas: samples y pruebas
temp2 <- temp1 %>% separate(col = name, into = c("samples", "pruebas"), sep = ";")
#La función spread hace lo opuesto a gather. Son funciones complementarias.
#Es decir, si al resultado de aplicar la función spread le aplicamos la función gather llegamos al dataset original.
temp3 <- temp2 %>% spread(key = pruebas, value = val)
#Convertir la variable "samples" a factor.
temp3$samples <- factor(temp3$samples,
levels = c("n1=28, n2=1406", "n1=144, n2=1290",
"n1=287, n2=1147", "n1=430, n2=1004",
"n1=574, n2=860", "n1=717, n2=717")
)
#Gráfica
p<- ggplot(temp3, aes(x = `effect size`, y = power, color = samples)) +
geom_line(size=1) +
theme_bw() +
theme(axis.text=element_text(size=10),
axis.title=element_text(size=10),
legend.text=element_text(size=10)) +
geom_vline(xintercept = .54, linetype = 2) +
geom_hline(yintercept = 0.80, linetype = 2)+
labs(x="Effect size", y="Power") +
scale_color_discrete(name = "Sampling size")
# so simple to make interactive plots
plotly::ggplotly(p)
Significancia d = 0.4
#library(dplyr)
library(tidyr) #Para manipulación de datos: separate, gather, spread
#library(ggplot2) #
#library(plotly) #Para curvas de potencias interactivas
#library(pwr) #Para cálculo de las potencias
#Generar cálculos de las potencias con la funcion pwr.t2n.test.
#Es un t-test para 2 muestras con tamaños diferentes
#Aquí: d es el tamaño del efecto, Power= potencia de la prueba= 1-beta):
#pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
ptab <- cbind(NULL, NULL)
for (i in seq(0,1, length.out = 200)){
pwrt1 <- pwr.t2n.test(n1 = 28, n2 = 1406,
sig.level = 0.4, power = NULL,
d = i, alternative="two.sided")
pwrt2 <- pwr.t2n.test(n1 = 144, n2 = 1290,
sig.level = 0.4, power = NULL,
d = i, alternative="two.sided")
pwrt3 <- pwr.t2n.test(n1 = 287, n2 = 1147,
sig.level = 0.4, power = NULL,
d = i, alternative="two.sided")
pwrt4 <- pwr.t2n.test(n1 = 430, n2 = 1004,
sig.level = 0.4, power = NULL,
d = i, alternative="two.sided")
pwrt5 <- pwr.t2n.test(n1 = 574, n2 = 860,
sig.level = 0.4, power = NULL,
d = i, alternative="two.sided")
pwrt6 <- pwr.t2n.test(n1 = 717, n2 = 717,
sig.level = 0.4, power = NULL,
d = i, alternative="two.sided")
#Es un data frame de tamaño 200 por 12:
ptab <- rbind(ptab, cbind(pwrt1$d, pwrt1$power,
pwrt2$d, pwrt2$power,
pwrt3$d, pwrt3$power,
pwrt4$d, pwrt4$power,
pwrt5$d, pwrt5$power,
pwrt6$d, pwrt6$power))
}
#Es un data frame de tamaño 200 por 13 (la 1ra columna es ID)
ptab <- cbind(seq_len(nrow(ptab)), ptab)
colnames(ptab) <- c("id","n1=28, n2=1406;effect size","n1=28, n2=1406;power",
"n1=144, n2=1290;effect size","n1=144, n2=1290;power",
"n1=287, n2=1147;effect size","n1=287, n2=1147;power",
"n1=430, n2=1004;effect size","n1=430, n2=1004;power",
"n1=574, n2=860;effect size","n1=574, n2=860;power",
"n1=717, n2=717;effect size","n1=717, n2=717;power")
#gather se usa para "reunir" un par key-value. En este caso, en 3 columnas: ID, variables y respuestas numericas
temp1 <- ptab %>% as.data.frame() %>% pivot_longer(cols = 2:13, names_to = "name", values_to = "val") #gather(key = name, value = val, 2:13)
#Separar celdas en columnas, de acuerdo a una condición (sep=). En este caso, se separó "name" en dos columnas: samples y pruebas
temp2 <- temp1 %>% separate(col = name, into = c("samples", "pruebas"), sep = ";")
#La función spread hace lo opuesto a gather. Son funciones complementarias.
#Es decir, si al resultado de aplicar la función spread le aplicamos la función gather llegamos al dataset original.
temp3 <- temp2 %>% spread(key = pruebas, value = val)
#Convertir la variable "samples" a factor.
temp3$samples <- factor(temp3$samples,
levels = c("n1=28, n2=1406", "n1=144, n2=1290",
"n1=287, n2=1147", "n1=430, n2=1004",
"n1=574, n2=860", "n1=717, n2=717")
)
#Gráfica
p<- ggplot(temp3, aes(x = `effect size`, y = power, color = samples)) +
geom_line(size=1) +
theme_bw() +
theme(axis.text=element_text(size=10),
axis.title=element_text(size=10),
legend.text=element_text(size=10)) +
geom_vline(xintercept = .54, linetype = 2) +
geom_hline(yintercept = 0.80, linetype = 2)+
labs(x="Effect size", y="Power") +
scale_color_discrete(name = "Sampling size")
# so simple to make interactive plots
plotly::ggplotly(p)
Significancia d = 0.5
#library(dplyr)
library(tidyr) #Para manipulación de datos: separate, gather, spread
#library(ggplot2) #
#library(plotly) #Para curvas de potencias interactivas
#library(pwr) #Para cálculo de las potencias
#Generar cálculos de las potencias con la funcion pwr.t2n.test.
#Es un t-test para 2 muestras con tamaños diferentes
#Aquí: d es el tamaño del efecto, Power= potencia de la prueba= 1-beta):
#pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
ptab <- cbind(NULL, NULL)
for (i in seq(0,1, length.out = 200)){
pwrt1 <- pwr.t2n.test(n1 = 28, n2 = 1406,
sig.level = 0.5, power = NULL,
d = i, alternative="two.sided")
pwrt2 <- pwr.t2n.test(n1 = 144, n2 = 1290,
sig.level = 0.5, power = NULL,
d = i, alternative="two.sided")
pwrt3 <- pwr.t2n.test(n1 = 287, n2 = 1147,
sig.level = 0.5, power = NULL,
d = i, alternative="two.sided")
pwrt4 <- pwr.t2n.test(n1 = 430, n2 = 1004,
sig.level = 0.5, power = NULL,
d = i, alternative="two.sided")
pwrt5 <- pwr.t2n.test(n1 = 574, n2 = 860,
sig.level = 0.5, power = NULL,
d = i, alternative="two.sided")
pwrt6 <- pwr.t2n.test(n1 = 717, n2 = 717,
sig.level = 0.5, power = NULL,
d = i, alternative="two.sided")
#Es un data frame de tamaño 200 por 12:
ptab <- rbind(ptab, cbind(pwrt1$d, pwrt1$power,
pwrt2$d, pwrt2$power,
pwrt3$d, pwrt3$power,
pwrt4$d, pwrt4$power,
pwrt5$d, pwrt5$power,
pwrt6$d, pwrt6$power))
}
#Es un data frame de tamaño 200 por 13 (la 1ra columna es ID)
ptab <- cbind(seq_len(nrow(ptab)), ptab)
colnames(ptab) <- c("id","n1=28, n2=1406;effect size","n1=28, n2=1406;power",
"n1=144, n2=1290;effect size","n1=144, n2=1290;power",
"n1=287, n2=1147;effect size","n1=287, n2=1147;power",
"n1=430, n2=1004;effect size","n1=430, n2=1004;power",
"n1=574, n2=860;effect size","n1=574, n2=860;power",
"n1=717, n2=717;effect size","n1=717, n2=717;power")
#gather se usa para "reunir" un par key-value. En este caso, en 3 columnas: ID, variables y respuestas numericas
temp1 <- ptab %>% as.data.frame() %>% pivot_longer(cols = 2:13, names_to = "name", values_to = "val") #gather(key = name, value = val, 2:13)
#Separar celdas en columnas, de acuerdo a una condición (sep=). En este caso, se separó "name" en dos columnas: samples y pruebas
temp2 <- temp1 %>% separate(col = name, into = c("samples", "pruebas"), sep = ";")
#La función spread hace lo opuesto a gather. Son funciones complementarias.
#Es decir, si al resultado de aplicar la función spread le aplicamos la función gather llegamos al dataset original.
temp3 <- temp2 %>% spread(key = pruebas, value = val)
#Convertir la variable "samples" a factor.
temp3$samples <- factor(temp3$samples,
levels = c("n1=28, n2=1406", "n1=144, n2=1290",
"n1=287, n2=1147", "n1=430, n2=1004",
"n1=574, n2=860", "n1=717, n2=717")
)
#Gráfica
p<- ggplot(temp3, aes(x = `effect size`, y = power, color = samples)) +
geom_line(size=1) +
theme_bw() +
theme(axis.text=element_text(size=10),
axis.title=element_text(size=10),
legend.text=element_text(size=10)) +
geom_vline(xintercept = .54, linetype = 2) +
geom_hline(yintercept = 0.80, linetype = 2)+
labs(x="Effect size", y="Power") +
scale_color_discrete(name = "Sampling size")
# so simple to make interactive plots
plotly::ggplotly(p)
Significancia d = 0.6
#library(dplyr)
library(tidyr) #Para manipulación de datos: separate, gather, spread
#library(ggplot2) #
#library(plotly) #Para curvas de potencias interactivas
#library(pwr) #Para cálculo de las potencias
#Generar cálculos de las potencias con la funcion pwr.t2n.test.
#Es un t-test para 2 muestras con tamaños diferentes
#Aquí: d es el tamaño del efecto, Power= potencia de la prueba= 1-beta):
#pwr.t2n.test(n1 = NULL, n2= NULL, d = NULL, sig.level = 0.05, power = NULL, alternative = c("two.sided", "less","greater"))
ptab <- cbind(NULL, NULL)
for (i in seq(0,1, length.out = 200)){
pwrt1 <- pwr.t2n.test(n1 = 28, n2 = 1406,
sig.level = 0.6, power = NULL,
d = i, alternative="two.sided")
pwrt2 <- pwr.t2n.test(n1 = 144, n2 = 1290,
sig.level = 0.6, power = NULL,
d = i, alternative="two.sided")
pwrt3 <- pwr.t2n.test(n1 = 287, n2 = 1147,
sig.level = 0.6, power = NULL,
d = i, alternative="two.sided")
pwrt4 <- pwr.t2n.test(n1 = 430, n2 = 1004,
sig.level = 0.6, power = NULL,
d = i, alternative="two.sided")
pwrt5 <- pwr.t2n.test(n1 = 574, n2 = 860,
sig.level = 0.6, power = NULL,
d = i, alternative="two.sided")
pwrt6 <- pwr.t2n.test(n1 = 717, n2 = 717,
sig.level = 0.6, power = NULL,
d = i, alternative="two.sided")
#Es un data frame de tamaño 200 por 12:
ptab <- rbind(ptab, cbind(pwrt1$d, pwrt1$power,
pwrt2$d, pwrt2$power,
pwrt3$d, pwrt3$power,
pwrt4$d, pwrt4$power,
pwrt5$d, pwrt5$power,
pwrt6$d, pwrt6$power))
}
#Es un data frame de tamaño 200 por 13 (la 1ra columna es ID)
ptab <- cbind(seq_len(nrow(ptab)), ptab)
colnames(ptab) <- c("id","n1=28, n2=1406;effect size","n1=28, n2=1406;power",
"n1=144, n2=1290;effect size","n1=144, n2=1290;power",
"n1=287, n2=1147;effect size","n1=287, n2=1147;power",
"n1=430, n2=1004;effect size","n1=430, n2=1004;power",
"n1=574, n2=860;effect size","n1=574, n2=860;power",
"n1=717, n2=717;effect size","n1=717, n2=717;power")
#gather se usa para "reunir" un par key-value. En este caso, en 3 columnas: ID, variables y respuestas numericas
temp1 <- ptab %>% as.data.frame() %>% pivot_longer(cols = 2:13, names_to = "name", values_to = "val") #gather(key = name, value = val, 2:13)
#Separar celdas en columnas, de acuerdo a una condición (sep=). En este caso, se separó "name" en dos columnas: samples y pruebas
temp2 <- temp1 %>% separate(col = name, into = c("samples", "pruebas"), sep = ";")
#La función spread hace lo opuesto a gather. Son funciones complementarias.
#Es decir, si al resultado de aplicar la función spread le aplicamos la función gather llegamos al dataset original.
temp3 <- temp2 %>% spread(key = pruebas, value = val)
#Convertir la variable "samples" a factor.
temp3$samples <- factor(temp3$samples,
levels = c("n1=28, n2=1406", "n1=144, n2=1290",
"n1=287, n2=1147", "n1=430, n2=1004",
"n1=574, n2=860", "n1=717, n2=717")
)
#Gráfica
p<- ggplot(temp3, aes(x = `effect size`, y = power, color = samples)) +
geom_line(size=1) +
theme_bw() +
theme(axis.text=element_text(size=10),
axis.title=element_text(size=10),
legend.text=element_text(size=10)) +
geom_vline(xintercept = .54, linetype = 2) +
geom_hline(yintercept = 0.80, linetype = 2)+
labs(x="Effect size", y="Power") +
scale_color_discrete(name = "Sampling size")
# so simple to make interactive plots
plotly::ggplotly(p)
Analisis de Caso 2:
En efecto, cuando se realiza la variación de la significancia de las muestras, se puede observar que la potencia aumenta y el tamaño del efecto disminuye o se hace menor en la muestra altamente desequilibrada n1= 28 y n2 = 1406, por lo que se puede concluir que la significancia tiene un efecto directamente proporcional con la potencia, en ambos casos, 1 y 2, se puede observar que a mayor significancia mayor potencia manteniendo el efecto o disminuyendo el efecto de la muestra con menos muestras.