Import and Clean Data

ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv')
## New names:
## Rows: 3694 Columns: 14
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): name, category, old_price, link, other_colors, short_description, d... dbl
## (6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(ikea)
Data summary
Name ikea
Number of rows 3694
Number of columns 14
_______________________
Column type frequency:
character 7
logical 1
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
name 0 1 3 27 0 607 0
category 0 1 4 36 0 17 0
old_price 0 1 4 13 0 365 0
link 0 1 52 163 0 2962 0
other_colors 0 1 2 3 0 2 0
short_description 0 1 3 63 0 1706 0
designer 0 1 3 1261 0 381 0

Variable type: logical

skim_variable n_missing complete_rate mean count
sellable_online 0 1 0.99 TRU: 3666, FAL: 28

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
…1 0 1.00 1846.50 1066.51 0 923.25 1846.5 2769.75 3693 ▇▇▇▇▇
item_id 0 1.00 48632396.79 28887094.10 58487 20390574.00 49288078.0 70403572.75 99932615 ▇▇▇▇▇
price 0 1.00 1078.21 1374.65 3 180.90 544.7 1429.50 9585 ▇▁▁▁▁
depth 1463 0.60 54.38 29.96 1 38.00 47.0 60.00 257 ▇▃▁▁▁
height 988 0.73 101.68 61.10 1 67.00 83.0 124.00 700 ▇▂▁▁▁
width 589 0.84 104.47 71.13 1 60.00 80.0 140.00 420 ▇▅▂▁▁
data <- ikea %>%
    
    filter(!is.na(height), !is.na(width), !is.na(depth)) %>%
    
    select(-...1, -link, -item_id, -old_price) %>%
    
    mutate(price = log(price))

Explore Data - Identify good predictorsd

# Prepare data
size_binarized_table <- data %>%
    select(price, height, width, depth) %>%
    binarize()

size_binarized_table %>% glimpse()
## Rows: 1,899
## Columns: 16
## $ `price__-Inf_5.68697535633982`           <dbl> 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,…
## $ price__5.68697535633982_6.52209279817015 <dbl> 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,…
## $ price__6.52209279817015_7.37085996851068 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ price__7.37085996851068_Inf              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `height__-Inf_71`                        <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ height__71_92                            <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
## $ height__92_171                           <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,…
## $ height__171_Inf                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `width__-Inf_60`                         <dbl> 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ width__60_93                             <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ width__93_161.5                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ width__161.5_Inf                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `depth__-Inf_40`                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ depth__40_47                             <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,…
## $ depth__47_60                             <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,…
## $ depth__60_Inf                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# Correlate
size_corr_tbl <- size_binarized_table %>%
    correlate(price__7.37085996851068_Inf)

size_corr_tbl
## # A tibble: 16 × 3
##    feature bin                               correlation
##    <fct>   <chr>                                   <dbl>
##  1 price   7.37085996851068_Inf                   1     
##  2 width   161.5_Inf                              0.579 
##  3 depth   60_Inf                                 0.447 
##  4 width   -Inf_60                               -0.374 
##  5 price   -Inf_5.68697535633982                 -0.336 
##  6 price   6.52209279817015_7.37085996851068     -0.333 
##  7 price   5.68697535633982_6.52209279817015     -0.331 
##  8 height  -Inf_71                               -0.277 
##  9 width   60_93                                 -0.242 
## 10 height  171_Inf                                0.232 
## 11 depth   -Inf_40                               -0.232 
## 12 depth   47_60                                 -0.146 
## 13 height  71_92                                  0.0687
## 14 depth   40_47                                 -0.0588
## 15 width   93_161.5                               0.0413
## 16 height  92_171                                -0.0219
# Plot
size_corr_tbl %>%
    plot_correlation_funnel()

Product Category

data %>%
  ggplot(aes(price, as.factor(category))) +
  geom_boxplot()

category <- ikea %>%
    select(price, category) %>%
    mutate(price = log(price))

category_avg_price <- category %>%
  group_by(category) %>%
  summarise(avg_price = mean(price, na.rm = TRUE)) %>%
  ungroup()

ggplot(category_avg_price, aes(x = reorder(category, avg_price), y = avg_price)) +
  geom_bar(stat = "identity", fill = "skyblue", color = "black") +
  labs(title = "Average Price per Product Category",
       x = "Product Category",
       y = "Average Price (log-transformed)") +
  theme_minimal() + 
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

Are there Other Colors Available

data %>%
  ggplot(aes(price, as.factor(other_colors))) +
  geom_boxplot()

Is the Product also Sold Online?

data %>%
  ggplot(aes(price, sellable_online)) +
  geom_boxplot()

Short Description Correlation to the Price

data %>%
  
  unnest_tokens(output = word, input = short_description) %>%
  
  group_by(word) %>%
  summarise(price = mean(price), 
            n     = n()) %>%
  ungroup() %>%
  
  filter(n > 10, !str_detect(word, "\\d")) %>%
  slice_max(order_by = price, n = 20) %>%
  
  ggplot(aes(price, fct_reorder(word, price))) +
 geom_point() + 
  
  labs(y = "Words in Short Description", 
       x = "Average Price when Word is Included")