ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv')
## New names:
## Rows: 3694 Columns: 14
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): name, category, old_price, link, other_colors, short_description, d... dbl
## (6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(ikea)
Name | ikea |
Number of rows | 3694 |
Number of columns | 14 |
_______________________ | |
Column type frequency: | |
character | 7 |
logical | 1 |
numeric | 6 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
name | 0 | 1 | 3 | 27 | 0 | 607 | 0 |
category | 0 | 1 | 4 | 36 | 0 | 17 | 0 |
old_price | 0 | 1 | 4 | 13 | 0 | 365 | 0 |
link | 0 | 1 | 52 | 163 | 0 | 2962 | 0 |
other_colors | 0 | 1 | 2 | 3 | 0 | 2 | 0 |
short_description | 0 | 1 | 3 | 63 | 0 | 1706 | 0 |
designer | 0 | 1 | 3 | 1261 | 0 | 381 | 0 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
sellable_online | 0 | 1 | 0.99 | TRU: 3666, FAL: 28 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
…1 | 0 | 1.00 | 1846.50 | 1066.51 | 0 | 923.25 | 1846.5 | 2769.75 | 3693 | ▇▇▇▇▇ |
item_id | 0 | 1.00 | 48632396.79 | 28887094.10 | 58487 | 20390574.00 | 49288078.0 | 70403572.75 | 99932615 | ▇▇▇▇▇ |
price | 0 | 1.00 | 1078.21 | 1374.65 | 3 | 180.90 | 544.7 | 1429.50 | 9585 | ▇▁▁▁▁ |
depth | 1463 | 0.60 | 54.38 | 29.96 | 1 | 38.00 | 47.0 | 60.00 | 257 | ▇▃▁▁▁ |
height | 988 | 0.73 | 101.68 | 61.10 | 1 | 67.00 | 83.0 | 124.00 | 700 | ▇▂▁▁▁ |
width | 589 | 0.84 | 104.47 | 71.13 | 1 | 60.00 | 80.0 | 140.00 | 420 | ▇▅▂▁▁ |
data <- ikea %>%
filter(!is.na(height), !is.na(width), !is.na(depth)) %>%
select(-...1, -link, -item_id, -old_price) %>%
mutate(price = log(price))
# Prepare data
size_binarized_table <- data %>%
select(price, height, width, depth) %>%
binarize()
size_binarized_table %>% glimpse()
## Rows: 1,899
## Columns: 16
## $ `price__-Inf_5.68697535633982` <dbl> 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,…
## $ price__5.68697535633982_6.52209279817015 <dbl> 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,…
## $ price__6.52209279817015_7.37085996851068 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ price__7.37085996851068_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `height__-Inf_71` <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ height__71_92 <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
## $ height__92_171 <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,…
## $ height__171_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `width__-Inf_60` <dbl> 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ width__60_93 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ width__93_161.5 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ width__161.5_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `depth__-Inf_40` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ depth__40_47 <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,…
## $ depth__47_60 <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,…
## $ depth__60_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# Correlate
size_corr_tbl <- size_binarized_table %>%
correlate(price__7.37085996851068_Inf)
size_corr_tbl
## # A tibble: 16 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 price 7.37085996851068_Inf 1
## 2 width 161.5_Inf 0.579
## 3 depth 60_Inf 0.447
## 4 width -Inf_60 -0.374
## 5 price -Inf_5.68697535633982 -0.336
## 6 price 6.52209279817015_7.37085996851068 -0.333
## 7 price 5.68697535633982_6.52209279817015 -0.331
## 8 height -Inf_71 -0.277
## 9 width 60_93 -0.242
## 10 height 171_Inf 0.232
## 11 depth -Inf_40 -0.232
## 12 depth 47_60 -0.146
## 13 height 71_92 0.0687
## 14 depth 40_47 -0.0588
## 15 width 93_161.5 0.0413
## 16 height 92_171 -0.0219
# Plot
size_corr_tbl %>%
plot_correlation_funnel()
data %>%
ggplot(aes(price, as.factor(category))) +
geom_boxplot()
category <- ikea %>%
select(price, category) %>%
mutate(price = log(price))
category_avg_price <- category %>%
group_by(category) %>%
summarise(avg_price = mean(price, na.rm = TRUE)) %>%
ungroup()
ggplot(category_avg_price, aes(x = reorder(category, avg_price), y = avg_price)) +
geom_bar(stat = "identity", fill = "skyblue", color = "black") +
labs(title = "Average Price per Product Category",
x = "Product Category",
y = "Average Price (log-transformed)") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
data %>%
ggplot(aes(price, as.factor(other_colors))) +
geom_boxplot()
data %>%
ggplot(aes(price, sellable_online)) +
geom_boxplot()
data %>%
unnest_tokens(output = word, input = short_description) %>%
group_by(word) %>%
summarise(price = mean(price),
n = n()) %>%
ungroup() %>%
filter(n > 10, !str_detect(word, "\\d")) %>%
slice_max(order_by = price, n = 20) %>%
ggplot(aes(price, fct_reorder(word, price))) +
geom_point() +
labs(y = "Words in Short Description",
x = "Average Price when Word is Included")