Goal: Predict the average movie rating
horror_movies <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-01/horror_movies.csv')
## Rows: 32540 Columns: 20
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): original_title, title, original_language, overview, tagline, post...
## dbl (8): id, popularity, vote_count, vote_average, budget, revenue, runtim...
## lgl (1): adult
## date (1): release_date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(horror_movies)
Name | horror_movies |
Number of rows | 32540 |
Number of columns | 20 |
_______________________ | |
Column type frequency: | |
character | 10 |
Date | 1 |
logical | 1 |
numeric | 8 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
original_title | 0 | 1.00 | 1 | 191 | 0 | 30296 | 0 |
title | 0 | 1.00 | 1 | 191 | 0 | 29563 | 0 |
original_language | 0 | 1.00 | 2 | 2 | 0 | 97 | 0 |
overview | 1286 | 0.96 | 1 | 1000 | 0 | 31020 | 0 |
tagline | 19835 | 0.39 | 1 | 237 | 0 | 12513 | 0 |
poster_path | 4474 | 0.86 | 30 | 32 | 0 | 28048 | 0 |
status | 0 | 1.00 | 7 | 15 | 0 | 4 | 0 |
backdrop_path | 18995 | 0.42 | 29 | 32 | 0 | 13536 | 0 |
genre_names | 0 | 1.00 | 6 | 144 | 0 | 772 | 0 |
collection_name | 30234 | 0.07 | 4 | 56 | 0 | 815 | 0 |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
release_date | 0 | 1 | 1950-01-01 | 2022-12-31 | 2012-12-09 | 10999 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
adult | 0 | 1 | 0 | FAL: 32540 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
id | 0 | 1.00 | 445910.83 | 305744.67 | 17 | 146494.8 | 426521.00 | 707534.00 | 1033095.00 | ▇▆▆▅▅ |
popularity | 0 | 1.00 | 4.01 | 37.51 | 0 | 0.6 | 0.84 | 2.24 | 5088.58 | ▇▁▁▁▁ |
vote_count | 0 | 1.00 | 62.69 | 420.89 | 0 | 0.0 | 2.00 | 11.00 | 16900.00 | ▇▁▁▁▁ |
vote_average | 0 | 1.00 | 3.34 | 2.88 | 0 | 0.0 | 4.00 | 5.70 | 10.00 | ▇▂▆▃▁ |
budget | 0 | 1.00 | 543126.59 | 4542667.81 | 0 | 0.0 | 0.00 | 0.00 | 200000000.00 | ▇▁▁▁▁ |
revenue | 0 | 1.00 | 1349746.73 | 14430479.15 | 0 | 0.0 | 0.00 | 0.00 | 701842551.00 | ▇▁▁▁▁ |
runtime | 0 | 1.00 | 62.14 | 41.00 | 0 | 14.0 | 80.00 | 91.00 | 683.00 | ▇▁▁▁▁ |
collection | 30234 | 0.07 | 481534.88 | 324498.16 | 656 | 155421.0 | 471259.00 | 759067.25 | 1033032.00 | ▇▅▅▅▅ |
data <- horror_movies %>%
# Treat missing values
select(-tagline, -backdrop_path, -collection_name, -collection) %>%
na.omit() %>%
# Log transform variables with pos-skewed distribution
mutate(popularity = log(popularity))
Identify good predictors
Popularity
data %>%
ggplot(aes(vote_average, popularity)) +
scale_x_log10() +
geom_point()
## Warning: Transformation introduced infinite values in continuous x-axis
Revenue
data %>%
ggplot(aes(vote_average, revenue)) +
geom_point()
Runtime
data %>%
ggplot(aes(vote_average, runtime)) +
geom_point()
Title
data %>%
# Tokenize title
unnest_tokens(output = word, input = title) %>%
# Calculate avg rating per word
group_by(word) %>%
summarise(vote_average = mean(vote_average),
n = n()) %>%
ungroup() %>%
filter(n > 5, !str_detect(word, "\\d")) %>%
slice_max(order_by = vote_average, n = 25) %>%
# Plot
ggplot(aes(vote_average, fct_reorder(word, vote_average))) +
geom_point() +
labs(y = "Words in Title")