Para Arca Continental su principal canal de distribución es el canal tradicional, es decir, las tienditas de la esquina. Esto permite que la familia de productos de la compañía Coca Cola estén siempre cerca de sus consumidores a través de estas pequeñas empresas familiares que forman parte de su propia comunidad.
Sin embargo, este tipo de formato de Retail está enfrentando una fuerte competencia por parte de los canales modernos. En un principio fueron las tiendas de conveniencia como Oxxo y 7-Eleven quienes comenzaron a crear una importante cantidad de nuevos establecimientos, cada vez más en zonas habitacionales y no solo en avenidas o gasolineras.
#install.packages("readxl") # Para importar un archivo de excel
library(readxl)
#install.packages("DataExplorer") # Para importar un archivo de excel
library(DataExplorer)
#install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#install.packages("tidyverse") #Manipulación de datos
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ ggplot2 3.5.1 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#install.packages("ggplot2") #Para generar gráficas con mejor diseño
library(ggplot2)
#install.packages("forecast") #Para revisar tendencias y generar pronósticos
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
#file.choose()
df <- read_excel("C:\\Users\\amber\\Downloads\\Datos Arca Continental Original.xlsx")
colnames(df) <- make.names(colnames(df))
summary(df)
## ID Año Territorio Sub.Territorio
## Min. : 1 Min. :2016 Length:466509 Length:466509
## 1st Qu.:116628 1st Qu.:2017 Class :character Class :character
## Median :233255 Median :2018 Mode :character Mode :character
## Mean :233255 Mean :2018
## 3rd Qu.:349882 3rd Qu.:2019
## Max. :466509 Max. :2019
##
## CEDI Cliente Nombre Tamaño.Cte.Industria
## Length:466509 Length:466509 Length:466509 Length:466509
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Segmento.Det Marca Presentacion Tamaño
## Length:466509 Length:466509 Length:466509 Length:466509
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Retornable_NR Enero Febrero Marzo
## Length:466509 Min. : -19.0 Min. : -11.00 Min. : -32.00
## Class :character 1st Qu.: 1.0 1st Qu.: 1.00 1st Qu.: 1.00
## Mode :character Median : 2.0 Median : 2.00 Median : 3.00
## Mean : 10.1 Mean : 9.76 Mean : 11.36
## 3rd Qu.: 6.0 3rd Qu.: 6.00 3rd Qu.: 6.00
## Max. :42736.0 Max. :42767.00 Max. :42795.00
## NA's :233480 NA's :231213 NA's :227420
## Abril Mayo Junio Julio
## Min. : -70.00 Min. : -106.00 Min. : -211.0 Min. : -60.00
## 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.0 1st Qu.: 1.00
## Median : 3.00 Median : 3.00 Median : 3.0 Median : 2.00
## Mean : 11.71 Mean : 12.75 Mean : 12.2 Mean : 11.75
## 3rd Qu.: 6.00 3rd Qu.: 7.00 3rd Qu.: 6.0 3rd Qu.: 6.00
## Max. :42826.00 Max. :42856.00 Max. :42887.0 Max. :42917.00
## NA's :224057 NA's :216910 NA's :215753 NA's :223411
## Agosto Septiembre Octubre Noviembre
## Min. : -211.00 Min. : -527.0 Min. : -38.0 Min. : -25.0
## 1st Qu.: 1.00 1st Qu.: 1.0 1st Qu.: 1.0 1st Qu.: 1.0
## Median : 3.00 Median : 3.0 Median : 3.0 Median : 3.0
## Mean : 11.98 Mean : 13.4 Mean : 13.7 Mean : 13.3
## 3rd Qu.: 6.00 3rd Qu.: 7.0 3rd Qu.: 7.0 3rd Qu.: 6.0
## Max. :42948.00 Max. :42979.0 Max. :43009.0 Max. :43040.0
## NA's :220242 NA's :337314 NA's :338386 NA's :338460
## Diciembre
## Min. : -28.0
## 1st Qu.: 1.0
## Median : 3.0
## Mean : 14.8
## 3rd Qu.: 7.0
## Max. :43070.0
## NA's :341855
str(df)
## tibble [466,509 × 25] (S3: tbl_df/tbl/data.frame)
## $ ID : num [1:466509] 1 2 3 4 5 6 7 8 9 10 ...
## $ Año : num [1:466509] 2016 2016 2016 2016 2016 ...
## $ Territorio : chr [1:466509] "Guadalajara" "Guadalajara" "Guadalajara" "Guadalajara" ...
## $ Sub.Territorio : chr [1:466509] "Belenes" "Belenes" "Belenes" "Belenes" ...
## $ CEDI : chr [1:466509] "Suc. Belenes" "Suc. Belenes" "Suc. Belenes" "Suc. Belenes" ...
## $ Cliente : chr [1:466509] "77737" "77737" "77737" "77737" ...
## $ Nombre : chr [1:466509] "ABARR" "ABARR" "ABARR" "ABARR" ...
## $ Tamaño.Cte.Industria: chr [1:466509] "Extra Grande" "Extra Grande" "Extra Grande" "Extra Grande" ...
## $ Segmento.Det : chr [1:466509] "Agua Mineral" "Agua Purificada" "Agua Purificada" "Agua Saborizada" ...
## $ Marca : chr [1:466509] "Topo Chico A.M." "Ciel Agua Purificada" "Ciel Agua Purificada" "Ciel Exprim" ...
## $ Presentacion : chr [1:466509] "600 ml NR" "1 Ltro. N.R." "1.5 Lts. NR" "600 ml NR" ...
## $ Tamaño : chr [1:466509] "Individual" "Individual" "Individual" "Individual" ...
## $ Retornable_NR : chr [1:466509] "No Retornable" "No Retornable" "No Retornable" "No Retornable" ...
## $ Enero : num [1:466509] NA NA NA NA NA NA 1 NA 3 NA ...
## $ Febrero : num [1:466509] NA 2 NA NA NA NA NA 1 3 NA ...
## $ Marzo : num [1:466509] NA 8 3 NA NA 1 NA NA 4 NA ...
## $ Abril : num [1:466509] NA 4 6 NA NA NA NA 1 4 NA ...
## $ Mayo : num [1:466509] NA 4 3 NA NA NA 0 NA 4 NA ...
## $ Junio : num [1:466509] NA 2 3 NA NA NA NA 1 4 0 ...
## $ Julio : num [1:466509] NA 2 3 NA NA NA 0 NA 4 NA ...
## $ Agosto : num [1:466509] NA 2 3 NA NA NA NA 1 7 NA ...
## $ Septiembre : num [1:466509] NA 2 3 NA NA NA NA 1 4 NA ...
## $ Octubre : num [1:466509] NA 2 3 NA NA NA 0 NA 3 NA ...
## $ Noviembre : num [1:466509] NA 4 3 NA 0 NA NA NA 1 NA ...
## $ Diciembre : num [1:466509] 1 2 3 1 NA NA NA NA 3 NA ...
#create_report(df)
introduce(df)
## # A tibble: 1 × 9
## rows columns discrete_columns continuous_columns all_missing_columns
## <int> <int> <int> <int> <int>
## 1 466509 25 11 14 0
## # ℹ 4 more variables: total_missing_values <int>, complete_rows <int>,
## # total_observations <int>, memory_usage <dbl>
plot_intro(df)
plot_missing(df)
plot_histogram(df)
plot_bar(df)
## 4 columns ignored with more than 50 categories.
## Cliente: 5249 categories
## Nombre: 1090 categories
## Marca: 56 categories
## Presentacion: 57 categories
plot_correlation(df)
## 5 features with more than 20 categories ignored!
## Cliente: 5249 categories
## Nombre: 1090 categories
## Segmento.Det: 21 categories
## Marca: 56 categories
## Presentacion: 57 categories
count(df, Territorio, sort=TRUE)
## # A tibble: 2 × 2
## Territorio n
## <chr> <int>
## 1 Guadalajara 466508
## 2 Territorio 1
count(df, Sub.Territorio, sort=TRUE)
## # A tibble: 4 × 2
## Sub.Territorio n
## <chr> <int>
## 1 Belenes 208982
## 2 Huentitán 144196
## 3 Toluquilla 113330
## 4 Sub Territorio 1
count(df, CEDI, sort=TRUE)
## # A tibble: 4 × 2
## CEDI n
## <chr> <int>
## 1 Suc. Belenes 208982
## 2 Suc. Huentitán 144196
## 3 Suc. Toluquilla 113330
## 4 CEDI 1
count(df, Cliente, sort=TRUE)
## # A tibble: 5,249 × 2
## Cliente n
## <chr> <int>
## 1 0286 647
## 2 2912 586
## 3 2661 537
## 4 7821 531
## 5 1859 525
## 6 5583 516
## 7 9998 508
## 8 3601 506
## 9 5879 499
## 10 0335 496
## # ℹ 5,239 more rows
count(df, Nombre, sort=TRUE)
## # A tibble: 1,090 × 2
## Nombre n
## <chr> <int>
## 1 ABARR 71186
## 2 MARIA 39816
## 3 JOSE 17479
## 4 JUAN 7580
## 5 MARTH 5759
## 6 MISCE 5700
## 7 LUIS 5585
## 8 SUPER 4565
## 9 CARLO 3991
## 10 ROSA 3890
## # ℹ 1,080 more rows
count(df, Tamaño.Cte.Industria, sort=TRUE)
## # A tibble: 5 × 2
## Tamaño.Cte.Industria n
## <chr> <int>
## 1 Extra Grande 230190
## 2 Micro 117110
## 3 Pequeño 77875
## 4 Grande 41333
## 5 Tamaño Cte Industria 1
count(df, Segmento.Det, sort=TRUE)
## # A tibble: 21 × 2
## Segmento.Det n
## <chr> <int>
## 1 Sabores Regular 156242
## 2 Colas Regular 95720
## 3 Colas Light 43807
## 4 Jugos y Néctares 33362
## 5 Bebidas de Fruta 30641
## 6 Agua Purificada 20766
## 7 Agua Mineral 12590
## 8 Isotónicos Regular 11905
## 9 Té Regular 10062
## 10 Agua Saborizada 10056
## # ℹ 11 more rows
count(df, Marca, sort=TRUE)
## # A tibble: 56 × 2
## Marca n
## <chr> <int>
## 1 Coca-Cola 95720
## 2 Sprite 37925
## 3 Fanta 35728
## 4 Fresca 26435
## 5 Manzana Lift 25598
## 6 Coca-Cola Light 21926
## 7 Del Valle 21325
## 8 Ciel Agua Purificada 20766
## 9 Sidral Mundet 17150
## 10 Valle Frut 15808
## # ℹ 46 more rows
count(df, Presentacion, sort=TRUE)
## # A tibble: 57 × 2
## Presentacion n
## <chr> <int>
## 1 600 ml NR 74008
## 2 1 Ltro. N.R. 36930
## 3 2 Lts. NR 36415
## 4 500 ml Ret 35165
## 5 1.5 Lts. NR 30637
## 6 Lata 235 ml 24551
## 7 400 ml NR 22877
## 8 250 ml. NR PET 21735
## 9 500 ml NR Vidrio 18758
## 10 2.5 Lts. NR 13235
## # ℹ 47 more rows
count(df, Tamaño, sort=TRUE)
## # A tibble: 3 × 2
## Tamaño n
## <chr> <int>
## 1 Individual 328513
## 2 Familiar 137995
## 3 Tamaño 1
count(df, Retornable_NR, sort=TRUE)
## # A tibble: 3 × 2
## Retornable_NR n
## <chr> <int>
## 1 No Retornable 403226
## 2 Retornable 63282
## 3 Retornable_NR 1
# ¿Cuántos NAs tengo en la base de datos?
sum(is.na(df))
## [1] 3148501
# ¿Cuántos NAs tengo por variable?
sapply(df, function(x) sum(is.na(x)))
## ID Año Territorio
## 0 0 0
## Sub.Territorio CEDI Cliente
## 0 0 0
## Nombre Tamaño.Cte.Industria Segmento.Det
## 0 0 0
## Marca Presentacion Tamaño
## 0 0 0
## Retornable_NR Enero Febrero
## 0 233480 231213
## Marzo Abril Mayo
## 227420 224057 216910
## Junio Julio Agosto
## 215753 223411 220242
## Septiembre Octubre Noviembre
## 337314 338386 338460
## Diciembre
## 341855
# Reemplazar NAs con CEROS
df[is.na(df)] <- 0
sum(is.na(df))
## [1] 0
# Detectar valores atípicos
boxplot(df$Enero)
# Eliminar renglón de los totales
df <- df[df$Enero <6000, ]
boxplot(df$Enero)
# Análisis de Ventas
# Crear una nueva base de datos
df1 <- df
# Muestra las ventas de Enero a Junio por CEDI:
df2 <- select(df1,c(CEDI,Enero:Junio))
# Muestra los movimientos por Cedi y tamaño de tienda grande:
df3 <- df1 %>% filter(Tamaño.Cte.Industria == "Grande")
# Ordena la base de datos por Cedi, por marca y por presentación:
df4 <- df1 %>% arrange(CEDI, Marca, Presentacion)
# Agrega un campo calculado con las ventas del primer semestre y muestra las ventas del primer semestre por marca:
df5 <- df1 %>%
mutate(Ventas_Sem1 = Enero + Febrero + Marzo + Abril + Mayo + Junio)
ventas_sem1_por_marca <- df5 %>%
group_by(Marca) %>%
summarise(Ventas_Sem1=sum(Ventas_Sem1))
# Obtén la media de las ventas del primer semestre agrupado por marca, presentación y tamaño.
df6 <- df5 %>%
group_by(Marca, Presentacion, Tamaño) %>%
summarise(Ventas_Sem1=mean(Ventas_Sem1))
## `summarise()` has grouped output by 'Marca', 'Presentacion'. You can override
## using the `.groups` argument.
# Calcular medidas de tendencia central
summary(df1)
## ID Año Territorio Sub.Territorio
## Min. : 1 Min. :2016 Length:466508 Length:466508
## 1st Qu.:116628 1st Qu.:2017 Class :character Class :character
## Median :233256 Median :2018 Mode :character Mode :character
## Mean :233255 Mean :2018
## 3rd Qu.:349882 3rd Qu.:2019
## Max. :466509 Max. :2019
## CEDI Cliente Nombre Tamaño.Cte.Industria
## Length:466508 Length:466508 Length:466508 Length:466508
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Segmento.Det Marca Presentacion Tamaño
## Length:466508 Length:466508 Length:466508 Length:466508
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Retornable_NR Enero Febrero Marzo
## Length:466508 Min. : -19.000 Min. : -11.000 Min. : -32.000
## Class :character 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Mode :character Median : 0.000 Median : 0.000 Median : 0.000
## Mean : 4.951 Mean : 4.829 Mean : 5.729
## 3rd Qu.: 2.000 3rd Qu.: 2.000 3rd Qu.: 3.000
## Max. :5333.000 Max. :4995.000 Max. :5636.000
## Abril Mayo Junio Julio
## Min. : -70.000 Min. :-106.00 Min. :-211.000 Min. : -60.000
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 0.000 Median : 0.00 Median : 0.000 Median : 0.000
## Mean : 5.992 Mean : 6.73 Mean : 6.464 Mean : 6.033
## 3rd Qu.: 3.000 3rd Qu.: 3.00 3rd Qu.: 3.000 3rd Qu.: 3.000
## Max. :6164.000 Max. :6759.00 Max. :6033.000 Max. :6735.000
## Agosto Septiembre Octubre Noviembre
## Min. :-211.000 Min. :-527.000 Min. : -38.000 Min. : -25.00
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.000 Median : 0.000 Median : 0.000 Median : 0.00
## Mean : 6.235 Mean : 3.625 Mean : 3.674 Mean : 3.57
## 3rd Qu.: 3.000 3rd Qu.: 1.000 3rd Qu.: 1.000 3rd Qu.: 1.00
## Max. :6065.000 Max. :6509.000 Max. :6326.000 Max. :5319.00
## Diciembre
## Min. : -28.000
## 1st Qu.: 0.000
## Median : 0.000
## Mean : 3.858
## 3rd Qu.: 0.000
## Max. :6182.000
# Colapsar meses en una columna
df7 <- gather(df1, Mes, Ventas, Enero:Diciembre)
df7
## # A tibble: 5,598,096 × 15
## ID Año Territorio Sub.Territorio CEDI Cliente Nombre
## <dbl> <dbl> <chr> <chr> <chr> <chr> <chr>
## 1 1 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 2 2 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 3 3 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 4 4 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 5 5 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 6 6 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 7 7 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 8 8 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 9 9 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## 10 10 2016 Guadalajara Belenes Suc. Belenes 77737 ABARR
## # ℹ 5,598,086 more rows
## # ℹ 8 more variables: Tamaño.Cte.Industria <chr>, Segmento.Det <chr>,
## # Marca <chr>, Presentacion <chr>, Tamaño <chr>, Retornable_NR <chr>,
## # Mes <chr>, Ventas <dbl>
# Agregar una columna con el Número de Mes
meses <- c("Enero"="01", "Febrero"="02","Marzo"="03", "Abril"="04", "Mayo"="05", "Junio"="06", "Julio"="07", "Agosto"="08", "Septiembre"="09", "Octubre"="10", "Noviembre"="11", "Diciembre"="12")
df7$Número_de_Mes <- meses[df7$Mes]
# Graficar el total de ventas por mes y año
ventas_totales <- df7 %>%
group_by(Año, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes)
## `summarise()` has grouped output by 'Año'. You can override using the `.groups`
## argument.
ggplot(ventas_totales, aes(x=Número_de_Mes, y=Ventas_Totales,group=Año, color= as.factor(Año))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", color = "Año")
# Pregunta Detonante 4. ¿Se ha incrementado la venta de productos en envases retornables en los últimos dos años?
ventas_totales_er <- df7 %>%
filter(Retornable_NR == "Retornable") %>%
group_by(Año, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes)
## `summarise()` has grouped output by 'Año'. You can override using the `.groups`
## argument.
ggplot(ventas_totales_er, aes(x=Número_de_Mes, y=Ventas_Totales,group=Año, color= as.factor(Año))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", title= "Ventas Totales de Productos en Envases Retornables", color = "Año")
# Regresión lineal
ventas_4567 <- df7 %>%
filter(Cliente == "4567") %>%
group_by(Año) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
filter(Ventas_Totales != 0)
# ventas_4567$Secuencia <- 1:nrow(ventas_4567)
ggplot(ventas_4567, aes(x=Año, y=Ventas_Totales)) +
geom_point() +
labs(x="Año",y="Ventas Totales(Qty)", title= "Ventas Totales del Cliente 4567")
regresion <- lm(Ventas_Totales ~ Año, data=ventas_4567)
summary(regresion)
##
## Call:
## lm(formula = Ventas_Totales ~ Año, data = ventas_4567)
##
## Residuals:
## 1 2 3
## -5092 10185 -5092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48918677 17799125 2.748 0.222
## Año -24174 8820 -2.741 0.223
##
## Residual standard error: 12470 on 1 degrees of freedom
## Multiple R-squared: 0.8825, Adjusted R-squared: 0.765
## F-statistic: 7.512 on 1 and 1 DF, p-value: 0.2227
# Ecuación
# y = 48918677 - 24174 * Año
# R cuadrada ajustada
# 77%
datos <- data.frame(Año=2020:2025)
prediccion <- predict(regresion,datos)
prediccion
## 1 2 3 4 5 6
## 87197.333 63023.333 38849.333 14675.333 -9498.667 -33672.667
ventas_4567$Tipo_de_Dato <- "Datos Reales"
datos$Ventas_Totales <- prediccion
datos$Tipo_de_Dato <- "Predicción"
datos_combinados <- rbind(ventas_4567,datos)
ggplot(datos_combinados, aes(x=Año, y=Ventas_Totales, color=Tipo_de_Dato)) +
geom_point() +
labs(x="Año",y="Ventas Totales(Qty)", title= "Pronóstico a 5 años de Ventas del Cliente 4567")
# Regresión lineal
ventas_mensuales_4567 <- df7 %>%
filter(Cliente == "4567") %>%
group_by(Año, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
filter(Ventas_Totales != 0)
## `summarise()` has grouped output by 'Año'. You can override using the `.groups`
## argument.
# Confirmar que los datos que queremos modelar esten ordenados cronológicamente.
# Función de Serie de Tiempo MENSUAL, que inicia en Enero 2017
ts <- ts(data=ventas_mensuales_4567$Ventas_Totales, start = c(2017,1), frequency = 12)
# Función de Serie de Tiempo MENSUAL, que inicia en Abril 2017
# ts <- ts(data=ventas_mensuales_4567$Ventas_Totales, start = c(2017,4), frequency = 12)
# Función de Serie de Tiempo TRIMESTRAL, que inicia en Enero 2017
# ts <- ts(data=ventas_mensuales_4567$Ventas_Totales, start = c(2017,1), frequency = 4)
# Función de Serie de Tiempo TRIMESTRAL, que inicia en Octubre 2017 (Q4)
# ts <- ts(data=ventas_mensuales_4567$Ventas_Totales, start = c(2017,4), frequency = 4)
# Función de Serie de Tiempo ANUAL, que inicia en 2017
# ts <- ts(data=ventas_mensuales_4567$Ventas_Totales, start = 2017, frequency = 1)
# Crear Modelo ARIMA
# Modelo Autorregresivo Integrado de Promedio Movil.
arima <- auto.arima(ts, D=1) # D=1 por la temporalidad
arima
## Series: ts
## ARIMA(0,0,0)(0,1,0)[12]
##
## sigma^2 = 10383172: log likelihood = -189.94
## AIC=381.87 AICc=382.09 BIC=382.87
summary(arima)
## Series: ts
## ARIMA(0,0,0)(0,1,0)[12]
##
## sigma^2 = 10383172: log likelihood = -189.94
## AIC=381.87 AICc=382.09 BIC=382.87
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -36.98041 2547.446 1572.02 -1.811657 13.08459 0.6269271 0.2519497
# Generar el pronóstico de ventas
pronostico <- forecast(arima, level=95, h=36)
pronostico
## Point Forecast Lo 95 Hi 95
## Sep 2019 12086 5770.4219 18401.58
## Oct 2019 11427 5111.4219 17742.58
## Nov 2019 11270 4954.4219 17585.58
## Dec 2019 12227 5911.4219 18542.58
## Jan 2020 9430 3114.4219 15745.58
## Feb 2020 11312 4996.4219 17627.58
## Mar 2020 12515 6199.4219 18830.58
## Apr 2020 13334 7018.4219 19649.58
## May 2020 16286 9970.4219 22601.58
## Jun 2020 15347 9031.4219 21662.58
## Jul 2020 14005 7689.4219 20320.58
## Aug 2020 14050 7734.4219 20365.58
## Sep 2020 12086 3154.4238 21017.58
## Oct 2020 11427 2495.4238 20358.58
## Nov 2020 11270 2338.4238 20201.58
## Dec 2020 12227 3295.4238 21158.58
## Jan 2021 9430 498.4238 18361.58
## Feb 2021 11312 2380.4238 20243.58
## Mar 2021 12515 3583.4238 21446.58
## Apr 2021 13334 4402.4238 22265.58
## May 2021 16286 7354.4238 25217.58
## Jun 2021 15347 6415.4238 24278.58
## Jul 2021 14005 5073.4238 22936.58
## Aug 2021 14050 5118.4238 22981.58
## Sep 2021 12086 1147.0979 23024.90
## Oct 2021 11427 488.0979 22365.90
## Nov 2021 11270 331.0979 22208.90
## Dec 2021 12227 1288.0979 23165.90
## Jan 2022 9430 -1508.9021 20368.90
## Feb 2022 11312 373.0979 22250.90
## Mar 2022 12515 1576.0979 23453.90
## Apr 2022 13334 2395.0979 24272.90
## May 2022 16286 5347.0979 27224.90
## Jun 2022 15347 4408.0979 26285.90
## Jul 2022 14005 3066.0979 24943.90
## Aug 2022 14050 3111.0979 24988.90
plot(pronostico, main="Ventas Mensuales y Pronóstico a 3 Años del Cliente 4567", xlab="Año", ylab="Ventas (Qty)")
# Preguntas Detonantes A continuación
se presentan las preguntas detontantes de la evidencia
ventas_totales_seg <- df7 %>%
filter(Segmento.Det == "Agua Purificada" | Segmento.Det == "Isotónicos Regular" | Segmento.Det == "Colas Regular" ) %>%
filter(Año == 2018) %>%
group_by(Segmento.Det, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes)
## `summarise()` has grouped output by 'Segmento.Det'. You can override using the
## `.groups` argument.
ggplot(ventas_totales_seg, aes(x=Número_de_Mes, y=Ventas_Totales,group=Segmento.Det, color= as.factor(Segmento.Det))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", title= "Ventas Totales por Segmento", color = "Segmento")
Respuesta: En general, las ventas crecieron en 2019, aunque cada
segmento mostró un comportamiento distinto. El aumento en las ventas se
puede atribuir a mejores campañas de marketing y al lanzamiento de
nuevos productos. En 2018, las ventas de Coca-Cola entre febrero y
diciembre subieron en 100,000 unidades, mientras que las bebidas
isotónicas no mostraron variaciones.
ventas_totales_tam_cliente <- df7 %>%
filter(Año == 2019) %>%
group_by(Tamaño.Cte.Industria, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes) %>%
filter(Ventas_Totales != 0)
## `summarise()` has grouped output by 'Tamaño.Cte.Industria'. You can override
## using the `.groups` argument.
ggplot(ventas_totales_tam_cliente, aes(x=Número_de_Mes, y=Ventas_Totales,group=Tamaño.Cte.Industria, color= as.factor(Tamaño.Cte.Industria))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", title= "Ventas Totales por Tamaño de Cliente", color = "Tamaño de Cliente")
Respuesta:El aumento en las ventas es comparable sin importar el
tamaño de los clientes. Dado que todos los negocios operan los mismos
días y están localizados en la misma ciudad (Guadalajara), los factores
externos influyen de manera similar en todos. Mayo de 2019 fue el mes
con mayores ventas para todos los tamaños de clientes, mientras que el
primer bimestre fue el periodo más bajo también para todos
ellos.
ventas_totales_marca <- df7 %>%
filter(Año == 2019) %>%
filter(Marca == c("Coca-Cola", "Valle Frut", "Ciel Agua Purificada","Coca-Cola Light")) %>%
group_by(Marca, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes) %>%
filter(Ventas_Totales != 0)
## `summarise()` has grouped output by 'Marca'. You can override using the
## `.groups` argument.
ggplot(ventas_totales_marca, aes(x=Número_de_Mes, y=Ventas_Totales,group=Marca, color= as.factor(Marca))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", title= "Ventas Totales por Marca", color = "Marca")
Respuesta: El patrón de ventas es similar entre las marcas a lo
largo de los meses, aunque algunas venden mucho más que otras. Los meses
con más ventas de bebidas coinciden con las épocas de mayor temperatura,
y las marcas más reconocidas son las preferidas por los consumidores.
Mayo de 2019 fue el mes con las mayores ventas para todas las marcas,
pero Coca-Cola fue la que vendió más que todas. ## Preguntas 4 ¿Se ha incrementado la venta de
productos en envases retornables en los últimos dos años?
ventas_totales_envase <- df7 %>%
filter(Retornable_NR=="Retornable") %>%
filter(Año == c(2017,2018,2019)) %>%
group_by(Año, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes) %>%
filter(Ventas_Totales != 0)
## `summarise()` has grouped output by 'Año'. You can override using the `.groups`
## argument.
ggplot(ventas_totales_envase, aes(x=Número_de_Mes, y=Ventas_Totales,group=Año, color= as.factor(Año))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", title= "Ventas Totales de Envases Retornables", color = "Año")
Respuesta: La venta de productos en envase retornable aumentó en
los últimos dos años. Las campañas de conciencia ambiental han vuelto
populares las opciones menos dañinas al ecosistema. De 2017 a 2018 hubo
un ligero incremento en las ventas de envase retornable, y entre 2018 y
2019 el aumento fue muy notorio. ## Preguntas 5 ¿El comportamiento de la venta de
agua ha incrementado en relación al de los refrescos o las bebidas
isotónicas?
ventas_totales_seg <- df7 %>%
filter(Segmento.Det == "Agua Purificada" | Segmento.Det == "Isotónicos Regular" | Segmento.Det == "Colas Regular" ) %>%
filter(Año == 2018) %>%
group_by(Segmento.Det, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
arrange(Número_de_Mes)
## `summarise()` has grouped output by 'Segmento.Det'. You can override using the
## `.groups` argument.
ggplot(ventas_totales_seg, aes(x=Número_de_Mes, y=Ventas_Totales,group=Segmento.Det, color= as.factor(Segmento.Det))) +
geom_line() +
geom_point() +
labs(x="Mes",y="Ventas Totales(Qty)", title= "Ventas Totales por Segmento", color = "Segmento")
Respuesta: Las ventas de Agua Purificada no han crecido en
comparación con Refrescos o Bebidas Isotónicas. La percepción de que el
agua no ofrece un valor agregado en su preparación y la presencia de
azúcar en los refrescos hacen que estos sean la opción favorita de los
consumidores mexicanos. En 2018, las ventas totales de Agua Purificada
no superaron las 50,000 unidades, mientras que en su mejor mes,
Coca-Cola vendió 450,000 unidades, es decir, 8 veces más que el
agua. ## Preguntas 6 ¿Puede
decirse que la venta mensual de agua está relacionada con la venta
mensual de refrescos en los últimos 4 años?
ventas_totales_ayr <- df7 %>%
filter(Segmento.Det == c("Agua Purificada", "Colas Regular")) %>%
group_by(Segmento.Det, Año) %>%
summarise(Ventas_Totales = sum(Ventas))
## `summarise()` has grouped output by 'Segmento.Det'. You can override using the
## `.groups` argument.
ggplot(ventas_totales_ayr, aes(x=Año, y=Ventas_Totales,group=Segmento.Det, color= as.factor(Segmento.Det))) +
geom_line() +
geom_point() +
labs(x="Año",y="Ventas Totales(Qty)", title= "Ventas Totales por Segmento", color = "Segmento")
Respuesta: Las ventas de agua y refrescos aumentan en los mismos
meses y a lo largo de los años, pero no se puede afirmar que un
incremento provoque el otro. Los meses calurosos y el crecimiento de la
población impulsan el aumento en las ventas de ambas bebidas, ya sea
agua o refrescos. En la gráfica obtenida se nota un incremento anual
tanto en las ventas de agua como en las de refrescos. ## Preguntas 7 ¿A cuánto ascienden las ventas
esperadas para el 2020 en la Coca Cola de 500 ml NR Vidrio?
ventas_coca_vidrio <- df7 %>%
filter(Marca == "Coca-Cola" & Presentacion == "500 ml NR Vidrio") %>%
group_by(Año, Número_de_Mes) %>%
summarise(Ventas_Totales = sum(Ventas)) %>%
filter(Ventas_Totales != 0)
## `summarise()` has grouped output by 'Año'. You can override using the `.groups`
## argument.
# Confirmar que los datos que queremos modelar esten ordenados cronológicamente.
# Función de Serie de Tiempo MENSUAL, que inicia en Enero 2017
ts <- ts(data=ventas_coca_vidrio$Ventas_Totales, start = c(2016,1), frequency = 12)
# Crear Modelo ARIMA
# Modelo Autorregresivo Integrado de Promedio Movil.
arima <- auto.arima(ts, D=1) # D=1 por la temporalidad
arima
## Series: ts
## ARIMA(1,0,0)(0,1,0)[12] with drift
##
## Coefficients:
## ar1 drift
## 0.7092 719.6837
## s.e. 0.1328 299.8533
##
## sigma^2 = 41602728: log likelihood = -325.42
## AIC=656.84 AICc=657.7 BIC=661.24
summary(arima)
## Series: ts
## ARIMA(1,0,0)(0,1,0)[12] with drift
##
## Coefficients:
## ar1 drift
## 0.7092 719.6837
## s.e. 0.1328 299.8533
##
## sigma^2 = 41602728: log likelihood = -325.42
## AIC=656.84 AICc=657.7 BIC=661.24
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 48.85447 5325.927 3245.824 -1.37305 8.085494 0.3668297 -0.1551829
# Generar el pronóstico de ventas
pronostico <- forecast(arima, level=95, h=16)
pronostico
## Point Forecast Lo 95 Hi 95
## Sep 2019 57009.75 44367.95 69651.56
## Oct 2019 47611.80 32113.20 63110.40
## Nov 2019 43891.36 27138.87 60643.85
## Dec 2019 49988.01 32639.01 67337.02
## Jan 2020 52649.58 35008.14 70291.03
## Feb 2020 59116.44 41329.71 76903.18
## Mar 2020 63214.35 45354.98 81073.72
## Apr 2020 45929.53 28033.74 63825.33
## May 2020 77893.53 59979.44 95807.63
## Jun 2020 66916.74 48993.45 84840.03
## Jul 2020 65103.76 47175.85 83031.68
## Aug 2020 66475.17 48544.93 84405.41
## Sep 2020 65845.94 43788.54 87903.34
## Oct 2020 56389.84 32524.67 80255.02
## Nov 2020 52628.16 27903.54 77352.78
## Dec 2020 58695.56 33549.72 83841.40
plot(pronostico, main="Ventas Mensuales y Pronóstico para 2020 de Coca-Cola 500 ml NR Vidrio", xlab="Año", ylab="Ventas (Qty)")
**Respuesta: Se espera que las ventas mensuales de Coca-Cola de 500 ml
NR Vidrio para 2020 varíen entre 45,000 y 65,000 unidades, con un nivel
de confianza del 95%.