##CHAPTER 2.7 Practice Problems
## Soal 1
Movie <- c("Citizen Kane", "The Godfather", "Casablanca", "Raging Bull", "Singing in the Rain")
## Soal 2
Year <- c(1941, 1972, 1942, 1980, 1952)
## Soal 3
RunTime <- c(119, 177, 102, 129, 103)
## Soal 4
RunTimeHours <- RunTime / 60
## Soal 5
MovieInfo <- data.frame(Movie, Year, RunTime)
## Soal 6
Title <- c("The Secret of Monkey Island",
"Indiana Jones and the Fate of Atlantis",
"Day of the Tentacle",
"Grim Fandango")
## Soal 7
Release <- c(1990, 1992, 1993, 1998)
## Soal 8
Lucasartfounding_year <- 1982
## Soal 9
Rank <- c(14, 11, 6, 1)
## Soal 10
Tittle <- data.frame(Title, Release, Rank)
Tittle
## Title Release Rank
## 1 The Secret of Monkey Island 1990 14
## 2 Indiana Jones and the Fate of Atlantis 1992 11
## 3 Day of the Tentacle 1993 6
## 4 Grim Fandango 1998 1
##CHAPTER 4 ## 4.2
hours=c(8.84, 3.26, 2.81, 0.64, 0.60,
0.53, 0.37, 0.35, 0.31, 0.24)
hours[c(2,4,6)]
## [1] 3.26 0.64 0.53
hours[hours>1]
## [1] 8.84 3.26 2.81
hours[hours>=0.5&hours<=0.75]
## [1] 0.64 0.60 0.53
hours[hours<0.25|hours>4]
## [1] 8.84 0.24
## 4.3
data <- data.frame
Name = c("Sleeping", "Working", "Watching Television", "Socializing", "Food
Preparation", "Housework",
"Childcare", "Consumer Goods
Purchase", "Participating in
Recreation", "Attending Class")
AverageHours = c(8.84, 3.26, 2.81, 0.64,
0.60, 0.53, 0.37, 0.35,
0.31, 0.24)
Category = c("Personal Care",
"Work-Related", "Leisure",
"Leisure", "Household",
"Household", "Caring for
Household", "Purchasing",
"Leisure", "Education")
data <- data.frame(Name, AverageHours, Category)
data
## Name AverageHours
## 1 Sleeping 8.84
## 2 Working 3.26
## 3 Watching Television 2.81
## 4 Socializing 0.64
## 5 Food \n Preparation 0.60
## 6 Housework 0.53
## 7 Childcare 0.37
## 8 Consumer Goods \n Purchase 0.35
## 9 Participating in \n Recreation 0.31
## 10 Attending Class 0.24
## Category
## 1 Personal Care
## 2 Work-Related
## 3 Leisure
## 4 Leisure
## 5 Household
## 6 Household
## 7 Caring for \n Household
## 8 Purchasing
## 9 Leisure
## 10 Education
set.seed(8)
rnorm(10)
## [1] -0.08458607 0.84040013 -0.46348277 -0.55083500 0.73604043 -0.10788140
## [7] -0.17028915 -1.08833171 -3.01105168 -0.59317433
n <- 100
size <- 10
random_sample <- sample.int(n = n, size = size)
random_sample
## [1] 68 9 76 62 7 40 19 63 70 96
help(sample.int)
## starting httpd help server ... done
## Soal 1
College = c("William and Mary", "Christopher Newport", "George Mason", "James Madison", "Longwood", "Norfolk State", "Old Dominion", "Radford", "Mary Washington", "Virginia", "Virginia Commonwealth", "Virginia Military Institute", "Virginia Tech", "Virginia State")
Employees = c(2104, 922, 4043, 2833, 746, 919, 2369, 1273, 721, 7431, 5825, 550, 7303, 761)
TopSalary = c(425000, 381486, 536714, 428400, 322868, 295000, 448272, 312080, 449865, 561099, 503154, 364269, 500000, 356524)
MedianSalary = c(56496, 47895, 63029, 53080, 52000, 49605, 54416, 51000, 53045, 60048, 55000, 44999, 51656, 55925)
Colleges <- data.frame(College,Employees,TopSalary,MedianSalary)
## Soal 2
selected_median_salaries <- Colleges$MedianSalary[Colleges$TopSalary > 400000]
print(selected_median_salaries)
## [1] 56496 63029 53080 54416 53045 60048 55000 51656
## Soal 3
selected_colleges <- Colleges[Colleges$Employees <= 1000, ]
print(selected_colleges)
## College Employees TopSalary MedianSalary
## 2 Christopher Newport 922 381486 47895
## 5 Longwood 746 322868 52000
## 6 Norfolk State 919 295000 49605
## 9 Mary Washington 721 449865 53045
## 12 Virginia Military Institute 550 364269 44999
## 14 Virginia State 761 356524 55925
## Soal 4
sampled_colleges <- Colleges[sample(1:nrow(Colleges), size = 5), ]
print(sampled_colleges)
## College Employees TopSalary MedianSalary
## 8 Radford 1273 312080 51000
## 5 Longwood 746 322868 52000
## 10 Virginia 7431 561099 60048
## 6 Norfolk State 919 295000 49605
## 13 Virginia Tech 7303 500000 51656