Introducción

Información obtenida del Automated Surface Observing System (ASOS) de los aeropuertos de todo el mundo.

Instalar paquetes y llamar librerías

# install.packages("riem")
library(riem)

# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# install.packages("ggplot2")
library(ggplot2)

# install.packages("lubridate")
library(lubridate)

# install.packages("plyr")
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## 
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## 
## The following object is masked from 'package:purrr':
## 
##     compact

Obtener y graficar la información

# PASO 1. Buscar la red o (país) - Ejemplo: México, y copiar CODE 
#view(riem_networks())

# PASO 2. Buscar la estación (cuidad) - Ejemplo: Monterrey, y copiar ID 
#view(riem_stations("MX__ASOS"))

# PASO 3. Obtener informacion de la estación 
monterrey <- riem_measures("MMMY")

# Analisis Descriptivo 
summary(monterrey)
##    station              valid                             lon        
##  Length:95917       Min.   :2014-01-01 00:16:00.00   Min.   :-100.1  
##  Class :character   1st Qu.:2016-09-04 00:51:00.00   1st Qu.:-100.1  
##  Mode  :character   Median :2019-05-03 13:42:00.00   Median :-100.1  
##                     Mean   :2019-05-12 11:49:36.21   Mean   :-100.1  
##                     3rd Qu.:2022-01-21 00:40:00.00   3rd Qu.:-100.1  
##                     Max.   :2024-09-11 23:40:00.00   Max.   :-100.1  
##                                                                      
##       lat             tmpf             dwpf            relh       
##  Min.   :25.78   Min.   : 23.00   Min.   :-5.80   Min.   :  2.32  
##  1st Qu.:25.78   1st Qu.: 64.40   1st Qu.:51.80   1st Qu.: 48.32  
##  Median :25.78   Median : 73.40   Median :62.60   Median : 69.14  
##  Mean   :25.78   Mean   : 72.66   Mean   :58.24   Mean   : 65.41  
##  3rd Qu.:25.78   3rd Qu.: 82.40   3rd Qu.:68.00   3rd Qu.: 83.44  
##  Max.   :25.78   Max.   :111.20   Max.   :86.00   Max.   :100.00  
##                  NA's   :137      NA's   :1734    NA's   :1779    
##       drct            sknt             p01i        alti            mslp       
##  Min.   :  0.0   Min.   : 0.000   Min.   :0   Min.   : 0.04   Min.   : 913.2  
##  1st Qu.: 70.0   1st Qu.: 4.000   1st Qu.:0   1st Qu.:29.87   1st Qu.:1011.4  
##  Median :110.0   Median : 5.000   Median :0   Median :29.97   Median :1014.4  
##  Mean   :131.1   Mean   : 5.844   Mean   :0   Mean   :29.97   Mean   :1015.2  
##  3rd Qu.:160.0   3rd Qu.: 8.000   3rd Qu.:0   3rd Qu.:30.07   3rd Qu.:1018.1  
##  Max.   :360.0   Max.   :98.000   Max.   :0   Max.   :30.81   Max.   :1103.4  
##  NA's   :73      NA's   :73                   NA's   :28      NA's   :84061   
##       vsby             gust           skyc1              skyc2          
##  Min.   : 0.000   Min.   : 13.00   Length:95917       Length:95917      
##  1st Qu.: 6.000   1st Qu.: 20.00   Class :character   Class :character  
##  Median :10.000   Median : 24.00   Mode  :character   Mode  :character  
##  Mean   : 8.938   Mean   : 24.31                                        
##  3rd Qu.:12.000   3rd Qu.: 27.00                                        
##  Max.   :40.000   Max.   :210.00                                        
##  NA's   :32       NA's   :92817                                         
##     skyc3              skyc4               skyl1           skyl2      
##  Length:95917       Length:95917       Min.   :    0   Min.   :    0  
##  Class :character   Class :character   1st Qu.: 1500   1st Qu.: 2000  
##  Mode  :character   Mode  :character   Median : 3000   Median : 7000  
##                                        Mean   : 5348   Mean   : 8034  
##                                        3rd Qu.: 7000   3rd Qu.:10000  
##                                        Max.   :37000   Max.   :30000  
##                                        NA's   :29109   NA's   :64576  
##      skyl3           skyl4         wxcodes          ice_accretion_1hr
##  Min.   :  400   Min.   : 3000   Length:95917       Mode:logical     
##  1st Qu.: 8000   1st Qu.:20000   Class :character   NA's:95917       
##  Median :20000   Median :20000   Mode  :character                    
##  Mean   :14721   Mean   :20646                                       
##  3rd Qu.:20000   3rd Qu.:25000                                       
##  Max.   :30000   Max.   :25000                                       
##  NA's   :90537   NA's   :95719                                       
##  ice_accretion_3hr ice_accretion_6hr peak_wind_gust peak_wind_drct
##  Mode:logical      Mode:logical      Mode:logical   Mode:logical  
##  NA's:95917        NA's:95917        NA's:95917     NA's:95917    
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  peak_wind_time      feel           metar           snowdepth     
##  Mode:logical   Min.   :  9.11   Length:95917       Mode:logical  
##  NA's:95917     1st Qu.: 64.40   Class :character   NA's:95917    
##                 Median : 73.79   Mode  :character                 
##                 Mean   : 73.37                                    
##                 3rd Qu.: 83.90                                    
##                 Max.   :131.06                                    
##                 NA's   :1782
str(monterrey)
## tibble [95,917 × 32] (S3: tbl_df/tbl/data.frame)
##  $ station          : chr [1:95917] "MMMY" "MMMY" "MMMY" "MMMY" ...
##  $ valid            : POSIXct[1:95917], format: "2014-01-01 00:16:00" "2014-01-01 00:49:00" ...
##  $ lon              : num [1:95917] -100 -100 -100 -100 -100 ...
##  $ lat              : num [1:95917] 25.8 25.8 25.8 25.8 25.8 ...
##  $ tmpf             : num [1:95917] 48.2 48.2 48.2 46.4 46.4 46.4 46.4 46.4 46.4 46.4 ...
##  $ dwpf             : num [1:95917] 46.4 46.4 46.4 46.4 46.4 44.6 44.6 44.6 44.6 44.6 ...
##  $ relh             : num [1:95917] 93.5 93.5 93.5 100 100 ...
##  $ drct             : num [1:95917] 0 120 120 120 110 100 110 130 60 0 ...
##  $ sknt             : num [1:95917] 0 3 5 6 5 5 4 3 3 0 ...
##  $ p01i             : num [1:95917] 0 0 0 0 0 0 0 0 0 0 ...
##  $ alti             : num [1:95917] 30.3 30.3 30.3 30.3 30.3 ...
##  $ mslp             : num [1:95917] NA NA NA NA NA ...
##  $ vsby             : num [1:95917] 4 3 1 0.25 0.12 0.12 0.06 0.06 0.06 0.12 ...
##  $ gust             : num [1:95917] NA NA NA NA NA NA NA NA NA NA ...
##  $ skyc1            : chr [1:95917] "SCT" "SCT" "SCT" "VV " ...
##  $ skyc2            : chr [1:95917] "BKN" "BKN" "BKN" NA ...
##  $ skyc3            : chr [1:95917] "OVC" "OVC" "OVC" NA ...
##  $ skyc4            : chr [1:95917] NA NA NA NA ...
##  $ skyl1            : num [1:95917] 700 300 200 200 100 100 100 100 100 100 ...
##  $ skyl2            : num [1:95917] 1200 400 300 NA NA NA NA NA NA NA ...
##  $ skyl3            : num [1:95917] 4000 900 500 NA NA NA NA NA NA NA ...
##  $ skyl4            : num [1:95917] NA NA NA NA NA NA NA NA NA NA ...
##  $ wxcodes          : chr [1:95917] NA "BR" "BR" "FG" ...
##  $ ice_accretion_1hr: logi [1:95917] NA NA NA NA NA NA ...
##  $ ice_accretion_3hr: logi [1:95917] NA NA NA NA NA NA ...
##  $ ice_accretion_6hr: logi [1:95917] NA NA NA NA NA NA ...
##  $ peak_wind_gust   : logi [1:95917] NA NA NA NA NA NA ...
##  $ peak_wind_drct   : logi [1:95917] NA NA NA NA NA NA ...
##  $ peak_wind_time   : logi [1:95917] NA NA NA NA NA NA ...
##  $ feel             : num [1:95917] 48.2 47.2 45.6 42.9 43.5 ...
##  $ metar            : chr [1:95917] "MMMY 010016Z 00000KT 4SM SCT007 BKN012 OVC040 09/08 A3028 RMK 8/5// BR" "MMMY 010049Z 12003KT 3SM BR SCT003 BKN004 OVC009 09/08 A3028 RMK 8/5// -DZ OCNL" "MMMY 010116Z 12005KT 1SM BR SCT002 BKN003 OVC005 09/08 A3028 RMK 8/6// -DZ OCNL" "MMMY 010120Z 12006KT 1/4SM FG VV002 08/08 A3029 RMK 8//// BC FG MOV SE/NW" ...
##  $ snowdepth        : logi [1:95917] NA NA NA NA NA NA ...
# Filtrar información del último mes
mty_ago_24 <- subset(monterrey, valid >= as.POSIXct("2024-08-01 00:00") & valid <= as.POSIXct("2024-08-31 23:59"))
# Ejercicio 1: Realizar una gráfica de barras de la temperatura promedio diario en agosto en Monterrey en C.

promedio <- mty_ago_24 %>% 
  mutate(fecha = as.Date(valid)) %>%
  group_by(fecha) %>%
  summarize(temp_promedio = mean(tmpf, na.rm = TRUE))

promedio$tempc <- (promedio$temp_promedio-32)/1.8

# ggplot(promedio, aes(x = fecha, y = tempc)) +
# geom_col(fill = "blue") +
# labs(title = "Temperatura Promedio en Monterrey durante Agosto 2024", x = "Fecha", y = "Temperatura (C)") 
# geom_text(aes(label=round(tempc,1)), vjust = -0.5, size = 3)
LS0tCnRpdGxlOiAiQVNPUyIKYXV0aG9yOiAiQWRyacOhbiBFbGl6b25kbyBBMDA4MzUxNjAiCmRhdGU6ICIyMDI0LTA5LTExIgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUgCiAgICB0b2NfZmxvYXQ6IFRSVUUgCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFIAogICAgdGhlbWU6IHlldGkKLS0tCgohW10oQzovVXNlcnMvYWRyaWFuZWxpem9uZG8vRGVza3RvcC9sb3ctdGllci1nb2QtYXdlc29tZS5naWYpCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93OyI+SW50cm9kdWNjacOzbjwvc3Bhbj4KSW5mb3JtYWNpw7NuICBvYnRlbmlkYSBkZWwgKkF1dG9tYXRlZCBTdXJmYWNlIE9ic2VydmluZyBTeXN0ZW0gKEFTT1MpKiBkZSBsb3MgYWVyb3B1ZXJ0b3MgZGUgdG9kbyBlbCBtdW5kby4KCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB5ZWxsb3c7Ij5JbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzPC9zcGFuPgpgYGB7cn0KIyBpbnN0YWxsLnBhY2thZ2VzKCJyaWVtIikKbGlicmFyeShyaWVtKQoKIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKCiMgaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90MiIpCmxpYnJhcnkoZ2dwbG90MikKCiMgaW5zdGFsbC5wYWNrYWdlcygibHVicmlkYXRlIikKbGlicmFyeShsdWJyaWRhdGUpCgojIGluc3RhbGwucGFja2FnZXMoInBseXIiKQpsaWJyYXJ5KHBseXIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHllbGxvdzsiPk9idGVuZXIgeSBncmFmaWNhciBsYSBpbmZvcm1hY2nDs248L3NwYW4+CmBgYHtyfQojIFBBU08gMS4gQnVzY2FyIGxhIHJlZCBvIChwYcOtcykgLSBFamVtcGxvOiBNw6l4aWNvLCB5IGNvcGlhciBDT0RFIAojdmlldyhyaWVtX25ldHdvcmtzKCkpCgojIFBBU08gMi4gQnVzY2FyIGxhIGVzdGFjacOzbiAoY3VpZGFkKSAtIEVqZW1wbG86IE1vbnRlcnJleSwgeSBjb3BpYXIgSUQgCiN2aWV3KHJpZW1fc3RhdGlvbnMoIk1YX19BU09TIikpCgojIFBBU08gMy4gT2J0ZW5lciBpbmZvcm1hY2lvbiBkZSBsYSBlc3RhY2nDs24gCm1vbnRlcnJleSA8LSByaWVtX21lYXN1cmVzKCJNTU1ZIikKCiMgQW5hbGlzaXMgRGVzY3JpcHRpdm8gCnN1bW1hcnkobW9udGVycmV5KQpzdHIobW9udGVycmV5KQoKIyBGaWx0cmFyIGluZm9ybWFjacOzbiBkZWwgw7psdGltbyBtZXMKbXR5X2Fnb18yNCA8LSBzdWJzZXQobW9udGVycmV5LCB2YWxpZCA+PSBhcy5QT1NJWGN0KCIyMDI0LTA4LTAxIDAwOjAwIikgJiB2YWxpZCA8PSBhcy5QT1NJWGN0KCIyMDI0LTA4LTMxIDIzOjU5IikpCiMgRWplcmNpY2lvIDE6IFJlYWxpemFyIHVuYSBncsOhZmljYSBkZSBiYXJyYXMgZGUgbGEgdGVtcGVyYXR1cmEgcHJvbWVkaW8gZGlhcmlvIGVuIGFnb3N0byBlbiBNb250ZXJyZXkgZW4gQy4KCnByb21lZGlvIDwtIG10eV9hZ29fMjQgJT4lIAogIG11dGF0ZShmZWNoYSA9IGFzLkRhdGUodmFsaWQpKSAlPiUKICBncm91cF9ieShmZWNoYSkgJT4lCiAgc3VtbWFyaXplKHRlbXBfcHJvbWVkaW8gPSBtZWFuKHRtcGYsIG5hLnJtID0gVFJVRSkpCgpwcm9tZWRpbyR0ZW1wYyA8LSAocHJvbWVkaW8kdGVtcF9wcm9tZWRpby0zMikvMS44CgojIGdncGxvdChwcm9tZWRpbywgYWVzKHggPSBmZWNoYSwgeSA9IHRlbXBjKSkgKwojIGdlb21fY29sKGZpbGwgPSAiYmx1ZSIpICsKIyBsYWJzKHRpdGxlID0gIlRlbXBlcmF0dXJhIFByb21lZGlvIGVuIE1vbnRlcnJleSBkdXJhbnRlIEFnb3N0byAyMDI0IiwgeCA9ICJGZWNoYSIsIHkgPSAiVGVtcGVyYXR1cmEgKEMpIikgCiMgZ2VvbV90ZXh0KGFlcyhsYWJlbD1yb3VuZCh0ZW1wYywxKSksIHZqdXN0ID0gLTAuNSwgc2l6ZSA9IDMpCiAKCmBgYAoKCgoKCg==