Introduction

Participants (n = 957) were asked how strongly they agree with the following statements.

  • I seek information on the internet to diagnose my child/children.
  • I use information from the internet to identify appropriate treatments for my child/children.
  • I seek health or medical information on the internet for my child/children.
  • I consult the internet before seeing a healthcare provider.

In the first lines of code below, I import and clean the data. Most importantly, I removed anyone who said they weren’t a parent and don’t plan on becomeing one in the near future.

# Import, clean
dat=read.csv("/Users/marklacour/Desktop/Junk/Google Drive/Research/--Research -- Advance/0Parents/Wave 1 summary/Capps SEPA/wave1.csv")
dat=subset(dat,dat$Status != "Survey Preview") # Don't keep any "Survey Preview" rows
dat=dat[-c(1:2),]

dat=subset(dat,dat$switchboard != "I am not a parent, and don’t plan on becoming one")

After that, I recode the data to turn the verbal (“Strongly agree”, “Somewhat disagree”, etc.) data into numerical data.

######################################################
#### Parent status
parent.status=ifelse(dat$switchboard=="I am a parent, but my child (or children) have moved out of the house","past",NA)
parent.status=ifelse(dat$switchboard=="I am a parent, currently raising a child (or children)","present",parent.status)
parent.status=ifelse(dat$switchboard=="I plan on becoming a parent in the near future","future",parent.status)

dat$parent.status=parent.status



######################################################
#### online medical information seeking

seeking.future=cbind(
  as.numeric(car::recode(dat$seeking1.future, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking2.future, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking5.future, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking6.future, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7"))
)

seeking.present=cbind(
  as.numeric(car::recode(dat$seeking1.present, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking2.present, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking5.present, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking6.present, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7"))
)

seeking.past=cbind(
  as.numeric(car::recode(dat$seeking1.past, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking2.past, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking5.past, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7")),
  as.numeric(car::recode(dat$seeking6.past, "'Strongly disagree'=1; 'Disagree'=2; 'Somewhat disagree'=3; 'Neither agree nor disagree'=4; 'Somewhat agree'=5; 'Agree'=6; 'Strongly agree'=7"))
)

# combind across parenting statuses
a=seeking.past
a=ifelse(is.na(a),seeking.present,a)
a=ifelse(is.na(a),seeking.future,a)


online.health.info=rowMeans(seeking.past)
online.health.info=ifelse(is.na(online.health.info),rowMeans(seeking.present),online.health.info)
online.health.info=ifelse(is.na(online.health.info),rowMeans(seeking.future),online.health.info)

dat$online.health.info=online.health.info

Demographics (bivariate analyses)

Age

There is no simple, bivariate correlation between age and the degree to which parents report seeking medical information online.

dat$age=as.numeric(dat$age)

mod=lm(dat$online.health.info~dat$age)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$age)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0080 -1.0077  0.2421  0.9927  2.9929 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.008e+00  1.560e-01  25.697   <2e-16 ***
## dat$age     -1.964e-05  3.865e-03  -0.005    0.996    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.441 on 952 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  2.713e-08,  Adjusted R-squared:  -0.00105 
## F-statistic: 2.583e-05 on 1 and 952 DF,  p-value: 0.9959

When I observe null effects, I always like to examine the (approximate) Bayes factor comparing the null hypothesis to the alternative hypothesis (\(BF_{01}\)).

null.mod=lm(dat$online.health.info~1)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 4.944109

The null hypothesis (that age isn’t associated with internet information seeking) is almost 5 times more likely than the alternative. This is fairly strong evidence favoring the null, but it’s not decisive.

Gender

There is no association between gender and tendency to seek medical information online.

dat$is.male=ifelse(dat$gender=="Male",1,0)
dat$is.third=ifelse(dat$gender!="Male" & dat$gender!="Female",1,0)

mod=lm(dat$online.health.info~dat$is.male)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$is.male)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0866 -0.9583  0.1634  1.0417  3.0417 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.95833    0.05878  67.337   <2e-16 ***
## dat$is.male  0.12829    0.09641   1.331    0.184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.44 on 953 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.001854,   Adjusted R-squared:  0.0008069 
## F-statistic:  1.77 on 1 and 953 DF,  p-value: 0.1836

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 12.73831

Yup, looks like gender (by itself, taking no other variables into consideration) is definitely not related to online information seeking.

Sexual orientation

There is no statistically significant difference in online information seeking between heterosexual participants and LGBTQ+ ones.

dat$is.bi=ifelse(dat$orientation=="Bisexual",1,0)
dat$is.homosexual=ifelse(dat$orientation=="Homosexual (Gay, Lesbian)",1,0)
dat$is.lgbt=ifelse(dat$orientation!="Heterosexual (Straight)",1,0)

mod=lm(dat$online.health.info~dat$is.lgbt)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$is.lgbt)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0157 -1.0157  0.2343  1.0430  3.0430 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.01566    0.05101  78.718   <2e-16 ***
## dat$is.lgbt -0.05866    0.12582  -0.466    0.641    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.441 on 953 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.000228,   Adjusted R-squared:  -0.0008211 
## F-statistic: 0.2174 on 1 and 953 DF,  p-value: 0.6412

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 27.71461

That’s a big Bayes Factor. The null hypothesis wins this one big time.

Race

There is no statistically significant relationship between white and non-white participants.

is.white=ifelse(dat$race=="White",1,0)
dat$is.white=is.white
is.asian=ifelse(dat$race=="Asian",1,0)
dat$is.asian=is.asian
is.black=ifelse(dat$race=="Black or African American",1,0)
dat$is.black=is.black
is.multiple=ifelse(grepl(",",dat$race),1,0)
dat$is.multiple=is.multiple

mod=lm(dat$online.health.info~dat$is.white)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$is.white)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.023 -1.023  0.227  1.027  3.027 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.97308    0.07993  49.704   <2e-16 ***
## dat$is.white  0.04994    0.09842   0.507    0.612    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.441 on 953 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0002701,  Adjusted R-squared:  -0.0007789 
## F-statistic: 0.2575 on 1 and 953 DF,  p-value: 0.612

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 27.16316

Another big win for the null hypothesis.

Ethnicity

No statistically significant difference betwen Hispanic and non-Hispanic participants.

is.latino=ifelse(dat$latino=="Hispanic or Latino or Spanish Origin",1,0)
dat$is.latino=is.latino

mod=lm(dat$online.health.info~dat$is.latino)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$is.latino)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0149 -1.0149  0.2351  0.9851  3.0714 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    4.01488    0.04922  81.564   <2e-16 ***
## dat$is.latino -0.08631    0.15366  -0.562    0.574    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.441 on 953 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0003309,  Adjusted R-squared:  -0.000718 
## F-statistic: 0.3155 on 1 and 953 DF,  p-value: 0.5745

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 26.3855

Big win for the null

English as one’s first language

Nothing for English as first langauge.

# English first language
english.not.first=ifelse(dat$language != "Yes",1,0)
dat$english.not.first=english.not.first

mod=lm(dat$online.health.info~dat$english.not.first)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$english.not.first)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0077 -1.0077  0.2423  0.9923  3.0298 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.00767    0.04770  84.023   <2e-16 ***
## dat$english.not.first -0.03743    0.22744  -0.165    0.869    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.441 on 953 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  2.842e-05,  Adjusted R-squared:  -0.001021 
## F-statistic: 0.02708 on 1 and 953 DF,  p-value: 0.8693

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 30.48658

The null dominates.

Political affiliation

No statistically significant association between political affiliation and online information seeking

# Politics
pols=dat$politics
pols=ifelse(pols=="Very liberal",1,pols)
pols=ifelse(pols=="Somewhat liberal",2,pols)
pols=ifelse(pols=="Neutral",3,pols)
pols=ifelse(pols=="Somewhat conservative",4,pols)
pols=ifelse(pols=="Very conservative",5,pols)
pols=as.numeric(pols)
dat$pols=pols

mod=lm(dat$online.health.info~dat$pols)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$pols)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0340 -1.0088  0.2286  1.0165  3.0165 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.97086    0.11963  33.194   <2e-16 ***
## dat$pols     0.01264    0.03984   0.317    0.751    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.442 on 950 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.0001058,  Adjusted R-squared:  -0.0009467 
## F-statistic: 0.1006 on 1 and 950 DF,  p-value: 0.7512

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 0.2481476

The null wins again.

Income

There IS a statistically significant relationship between income (considered by itself) and online information seeking. Namely, people of higher income tend to seek more information online.

income=dat$income
income=ifelse(income=="$0 - $29,999",1,income)
income=ifelse(income=="$30,000 - $59,999",2,income)
income=ifelse(income=="$60,000 - $89,999",3,income)
income=ifelse(income=="$90,000 - $119,999",4,income)
income=ifelse(income=="$120,000 or more",5,income)
income=as.numeric(income)
dat$income=income

mod=lm(dat$online.health.info~dat$income)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$income)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2505 -0.9975  0.2495  1.1260  3.2554 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.61810    0.11348  31.884  < 2e-16 ***
## dat$income   0.12648    0.03367   3.756 0.000183 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.432 on 950 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.01464,    Adjusted R-squared:  0.0136 
## F-statistic: 14.11 on 1 and 950 DF,  p-value: 0.0001828

Education

People with higher education levels are significantly more likely to seek out health information online.

education=dat$Education
education=ifelse(education=="Some high school",1,education)
education=ifelse(education=="High school diploma, or equivalent",2,education)
education=ifelse(education=="Some college",3,education)
education=ifelse(education=="Bachelor's Degree",4,education)
education=ifelse(education=="Master's Degree",5,education)
education=ifelse(education=="Doctorate or other advanced degree (e.g., M.D., J.D.)",6,education)
dat$education=as.numeric(education)

mod=lm(dat$online.health.info~dat$education)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$education)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3831 -1.0541  0.1959  1.1104  3.1104 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.39618    0.17819  19.059  < 2e-16 ***
## dat$education  0.16448    0.04634   3.549 0.000405 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.432 on 951 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.01307,    Adjusted R-squared:  0.01204 
## F-statistic:  12.6 on 1 and 951 DF,  p-value: 0.000405

Religious versus not religious

People who practice a religion and people who don’t (e.g., atheists, agnostics) are no different in terms of how much they report seeking out information online.

# religion (category)
not.religious=ifelse(dat$religion=="Not religious (e.g., Atheist, Agnostic)",1,0)
dat$not.religious=not.religious

mod=lm(dat$online.health.info~dat$not.religious)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$not.religious)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0486 -0.9814  0.2014  1.0186  3.0186 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.98140    0.05858  67.966   <2e-16 ***
## dat$not.religious  0.06717    0.09676   0.694    0.488    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.441 on 953 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0005053,  Adjusted R-squared:  -0.0005435 
## F-statistic: 0.4818 on 1 and 953 DF,  p-value: 0.4878

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 24.27643

The null dominates.

Regliosity

The degree to which someone considers themselves “religious” does not correlate with oneline information seeking.

# religiosity (continuum)
religious=dat$religious
religious=ifelse(religious=="Strongly disagree",1,religious)
religious=ifelse(religious=="Disagree",2,religious)
religious=ifelse(religious=="Somewhat disagree",3,religious)
religious=ifelse(religious=="Neither agree nor disagree",4,religious)
religious=ifelse(religious=="Somewhat agree",5,religious)
religious=ifelse(religious=="Agree",6,religious)
religious=ifelse(religious=="Strongly agree",7,religious)
dat$religiosity=as.numeric(religious)

mod=lm(dat$online.health.info~dat$religiosity)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$religiosity)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0524 -1.0062  0.1976  1.0316  3.0484 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.06919    0.09240  44.040   <2e-16 ***
## dat$religiosity -0.01680    0.02165  -0.776    0.438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.442 on 950 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.0006333,  Adjusted R-squared:  -0.0004187 
## F-statistic: 0.602 on 1 and 950 DF,  p-value: 0.438

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 0.2596109

Somehow, we got a non-significant result but \(BF_{01}\) indicates the null is less likely than the alternative. Maybe I made a mistake in my code? If not, that’s an odd result.

“Spirituality”

There’s no significant correlation between how “spiritual” someone is and their online information seeking habits.

# Spirituality
spiritual=dat$spiritual
spiritual=ifelse(spiritual=="Strongly disagree",1,spiritual)
spiritual=ifelse(spiritual=="Disagree",2,spiritual)
spiritual=ifelse(spiritual=="Somewhat disagree",3,spiritual)
spiritual=ifelse(spiritual=="Neither agree nor disagree",4,spiritual)
spiritual=ifelse(spiritual=="Somewhat agree",5,spiritual)
spiritual=ifelse(spiritual=="Agree",6,spiritual)
spiritual=ifelse(spiritual=="Strongly agree",7,spiritual)
dat$spiritual=as.numeric(spiritual)

mod=lm(dat$online.health.info~dat$spiritual)
summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$spiritual)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0190 -1.0138  0.2362  1.0072  2.9967 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.982348   0.120189  33.134   <2e-16 ***
## dat$spiritual 0.005235   0.024217   0.216    0.829    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.442 on 952 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  4.908e-05,  Adjusted R-squared:  -0.001001 
## F-statistic: 0.04673 on 1 and 952 DF,  p-value: 0.8289

And let’s see the \(BF_{01}\)

bf01=exp((BIC(mod)-BIC(null.mod))/2)
bf01
## [1] 8.218665

For once the null isn’t that much more likely than the alternative. This still seems like a pretty solid win for the null though.

Discussion of bivariate results

While many of the simple, bivariate relationships were not statistically significant, the analyses were also very simplistic on this initial run. Namely, I placed most diverse categories into a binary: “part of the numerical majority” versus “NOT part of the numerical majority.” This resulted in simplistic analyses like “white participants compared to non-white participants” and “hetero participants compared to LGBTQ+ participants.

Multiple regression

The problem with looking at a bunch of individual pairs of variables is that each pair only considers the two variables in isolation. With multiple regression, we are seeing whether the dependent variable (online information seeking) can be predicted from a 2+ predictor variables. When you take multiple predictor variables into account, the inter-correlations between each one is taken into account. In other words, maybe age (considered by itself) does not correlate with online information seeking. But maybe when age and income are both in the model together you can see that age (while adjusting for income) DOES predict online information seeking.

In the model below, I didn’t put EVERY demographic as a predictor. There are trade-offs; more predictors are better, but too many predictors (compared to how much data you have) can be a problem.

mod=lm(dat$online.health.info~
         dat$age+dat$is.male+dat$is.lgbt+dat$is.white+dat$pols+dat$income+dat$education+dat$religiosity)

summary(mod)
## 
## Call:
## lm(formula = dat$online.health.info ~ dat$age + dat$is.male + 
##     dat$is.lgbt + dat$is.white + dat$pols + dat$income + dat$education + 
##     dat$religiosity)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5179 -1.0050  0.1722  1.0962  3.5402 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.224611   0.266749  12.089   <2e-16 ***
## dat$age         -0.001120   0.003954  -0.283   0.7771    
## dat$is.male      0.095314   0.096885   0.984   0.3255    
## dat$is.lgbt      0.030353   0.131138   0.231   0.8170    
## dat$is.white     0.045669   0.101321   0.451   0.6523    
## dat$pols         0.042168   0.044920   0.939   0.3481    
## dat$income       0.090335   0.037159   2.431   0.0152 *  
## dat$education    0.130898   0.052329   2.501   0.0125 *  
## dat$religiosity -0.034547   0.024025  -1.438   0.1508    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.431 on 941 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.02412,    Adjusted R-squared:  0.01582 
## F-statistic: 2.907 on 8 and 941 DF,  p-value: 0.003305

It looks like income and education still have “unique” contributions to predicting online information seeking, but including all these variables together in the same model didn’t help highlight the unique contributions of other variables. In other words, the other, non-significant variables still don’t appear to be predictive of online information seeking, even after you take into account the inter-correlations AMONG these predictor variables.

Interactions (aka. “moderators”)

Another strategy might be to look at interactions. For instance, we could ask, “Do men and women of different income levels seek information online differently from one another?” This isn’t the same as having gender and income in the same model.

General Discussion

It might be worthwhile to break people down by their parenting status: “Not yet, but soon”, “raising kids right now”, and “raised kids in the past but they’ve moved out.” The analyses above lumps all these people together.