V. Online Supplemental Table 1: Ns and Proportions for
Characteristics of Sample EBPI Evaluation Reports
a. Column I
## Full: U.S. and non-U.S. reports (N = 292, Column 1, Online Supplement Table 1)
tabyl(remir_all, design)
tabyl(remir_all, "Published.In.Journal.")
tabyl(remir_all, "Certified.")
## Age
tabyl(remir_all, age_infant)
tabyl(remir_all, age_preschool)
tabyl(remir_all, age_elementary)
tabyl(remir_all, age_middle)
tabyl(remir_all, age_high)
tabyl(remir_all, age_youngadult)
tabyl(remir_all, age_adult)
## Place
tabyl(remir_all$pl_comm)
tabyl(remir_all$pl_corr)
tabyl(remir_all$pl_home)
tabyl(remir_all$pl_med)
tabyl(remir_all$pl_online)
tabyl(remir_all$pl_school)
tabyl(remir_all$pl_service)
## Outcome
tabyl(remir_all$out_adult)
tabyl(remir_all$out_educ)
tabyl(remir_all$out_emot)
tabyl(remir_all$out_phys)
tabyl(remir_all$out_posrel)
tabyl(remir_all$out_problem)
b. Column II
## Analysis: U.S. Reports (N = 240; Column 2, Online Supplement Table 1)
tabyl(remir_us, design)
tabyl(remir_us, "Published.In.Journal.")
tabyl(remir_us, "Certified.")
## Age
tabyl(remir_us, age_infant)
tabyl(remir_us, age_preschool)
tabyl(remir_us, age_elementary)
tabyl(remir_us, age_middle)
tabyl(remir_us, age_high)
tabyl(remir_us, age_youngadult)
tabyl(remir_us, age_adult)
## Place
tabyl(remir_us$pl_comm)
tabyl(remir_us$pl_corr)
tabyl(remir_us$pl_home)
tabyl(remir_us$pl_med)
tabyl(remir_us$pl_online)
tabyl(remir_us$pl_school)
tabyl(remir_us$pl_service)
## Outcome
tabyl(remir_us$out_adult)
tabyl(remir_us$out_educ)
tabyl(remir_us$out_emot)
tabyl(remir_us$out_phys)
tabyl(remir_us$out_posrel)
tabyl(remir_us$out_problem)
c. Column III
## SUBGROUP SAMPLE
tabyl(remir_us_subgroup, design)
tabyl(remir_us_subgroup, "Published.In.Journal.")
tabyl(remir_us_subgroup, "Certified.")
## Age
tabyl(remir_us_subgroup, age_infant)
tabyl(remir_us_subgroup, age_preschool)
tabyl(remir_us_subgroup, age_elementary)
tabyl(remir_us_subgroup, age_middle)
tabyl(remir_us_subgroup, age_high)
tabyl(remir_us_subgroup, age_youngadult)
tabyl(remir_us_subgroup, age_adult)
## Place
tabyl(remir_us_subgroup$pl_comm)
tabyl(remir_us_subgroup$pl_corr)
tabyl(remir_us_subgroup$pl_home)
tabyl(remir_us_subgroup$pl_med)
tabyl(remir_us_subgroup$pl_online)
tabyl(remir_us_subgroup$pl_school)
tabyl(remir_us_subgroup$pl_service)
## Outcome
tabyl(remir_us_subgroup$out_adult)
tabyl(remir_us_subgroup$out_educ)
tabyl(remir_us_subgroup$out_emot)
tabyl(remir_us_subgroup$out_phys)
tabyl(remir_us_subgroup$out_posrel)
tabyl(remir_us_subgroup$out_problem)
VI. Online Supplemental Table 2: Ns, Proportions, and Descriptive
Statistics for Characteristics of Sample EBPI Evaluation Reports
a. Column I
## FULL SAMPLE
## Studies That Reported Sample Distribution
tabyl(remir_all, ReportRace)
tabyl(remir_all, ReportHisp)
tabyl(remir_all, ReportGend)
tabyl(remir_all, ReportEcon)
## Note. Remir 1.0 measured if program targeted location (rural and urban)
## but did not measure if sample distribution was reported
## or percentage of sample in rural and urban locations
## Sample statistics for studies that report characteristic:
describe <- psych::describe
describe(remir_all$asian_pc)
describe(remir_all$black_pc)
describe(remir_all$native_pc)
describe(remir_all$pacif_pc)
describe(remir_all$white_pc)
describe(remir_all$multi_pc)
describe(remir_all$none_pc)
describe(remir_all$hisp_pc)
describe(remir_all$female_pc)
describe(remir_all$econ_pc)
b. Column II
## US SAMPLE
## Studies That Reported Sample Distribution
tabyl(remir_us, ReportRace)
tabyl(remir_us, ReportHisp)
tabyl(remir_us, ReportGend)
tabyl(remir_us, ReportEcon)
## Sample statistics for studies that report characteristic:
describe(remir_us$asian_pc)
describe(remir_us$black_pc)
describe(remir_us$native_pc)
describe(remir_us$pacif_pc)
describe(remir_us$white_pc)
describe(remir_us$multi_pc)
describe(remir_us$none_pc)
describe(remir_us$hisp_pc)
describe(remir_us$female_pc)
describe(remir_us$econ_pc)
c. Column III
## US SUBGROUP SAMPLE
## Studies That Reported Sample Distribution
tabyl(remir_us_subgroup, ReportRace)
tabyl(remir_us_subgroup, ReportHisp)
tabyl(remir_us_subgroup, ReportGend)
tabyl(remir_us_subgroup, ReportEcon)
## Sample statistics for studies that report characteristic:
describe(remir_us_subgroup$asian_pc)
describe(remir_us_subgroup$black_pc)
describe(remir_us_subgroup$native_pc)
describe(remir_us_subgroup$pacif_pc)
describe(remir_us_subgroup$white_pc)
describe(remir_us_subgroup$multi_pc)
describe(remir_us_subgroup$none_pc)
describe(remir_us_subgroup$hisp_pc)
describe(remir_us_subgroup$female_pc)
describe(remir_us_subgroup$econ_pc)
VII. Online Supplemental Table 3: Proportions Testing for Subgroup
Effects by Culturally Tailored Program (Yes or No) by Subgroup
a. Row I: Race
################ RACE ##################
## Test for Relationship Between Examined and Culturally Tailored
tabyl(remir_us$target_race)
tabyl(remir_us,examine12_race_short, target_race ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_race_short, remir_us$target_race, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_race_short and remir_us$target_race
## X-squared = 59.018, df = 2, p-value = 1.529e-13
b. Row II: Ethnicity
################ ETHNICTY ##################
## Test for Relationship Between Examined and Culturally Tailored
tabyl(remir_us$target_ethnic)
tabyl(remir_us,examine12_ethnic_short, target_ethnic ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_ethnic_short, remir_us$target_ethnic, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_ethnic_short and remir_us$target_ethnic
## X-squared = 15.904, df = 2, p-value = 0.000352
c. Row III: Gender
########
################ GENDER ##################
## Test for Relationship Between Examined and Culturally Tailored
tabyl(remir_us$target_gender)
tabyl(remir_us,examine12_gender_short, target_gender ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_gender_short, remir_us$target_gender, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_gender_short and remir_us$target_gender
## X-squared = 209.74, df = 2, p-value < 2.2e-16
d. Row IV: Sex
################ SEX ##################
## No Culturally Tailored Program for Sex
## Test for Relationship Between Examined and Culturally Tailored
## Assume all citations are not culturally tailed
tabyl(remir_us$examine12_sex_short)
e. Row V: Socioeconomic Status
################ SES ##################
## Test for Relationship Between Examined and Culturally Tailored
tabyl(remir_us$target_ses)
tabyl(remir_us,examine12_ses_short, target_ses ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_ses_short, remir_us$target_ses, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_ses_short and remir_us$target_ses
## X-squared = 12.094, df = 2, p-value = 0.002365
f. Row VI: Location (Rural, Urban)
################ Location ##################
## Test for Relationship Between Examined/Benefitted and Culturally Tailored
tabyl(remir_us,examine12_loc_short, target_loc ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_loc_short, remir_us$target_loc, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_loc_short and remir_us$target_loc
## X-squared = 0.25199, df = 1, p-value = 0.6157
g. Row VII: Nativity
################ Nativity ##################
## No culturally tailored programs
########################################################################
############## CHECK FOR CULTURALLY TAILORED AND BENEFITTED #############
###################### NOT LISTED IN TABLES ##############################
## The results for benefitted differ only trivially from those above for
## examined. Benefitted differs from examined in the presence of an 'Other' benefitted category. But the runs below show no cases in the other for culturally tailed programs. Thus, the comparison of culturally tailored programs for benefitted differes only trivially from that for examined.
## Show That Among culturally Tailored Programs, There are No other Benefits
tabyl((remir_us$target_race))
remir_us_temp <- remir_us %>% filter(target_race == 1)
tabyl(remir_us_temp, inter_benefit12_race_cat, subg_signif12_race_cat)
remir_us_temp <- remir_us %>% filter(target_ethnic == 1)
tabyl(remir_us_temp, inter_benefit12_ethnic_cat, subg_signif12_ethnic_cat)
remir_us_temp <- remir_us %>% filter(target_gender == 1)
tabyl(remir_us_temp, inter_benefit12_gender_cat, subg_signif12_gender)
remir_us_temp <- remir_us %>% filter(target_ses == 1)
tabyl(remir_us_temp, inter_benefit12_ses_cat, subg_signif12_ses)
rm(remir_us_temp)
VIII. Online Supplemental Table 4: Proportions Testing for Subgroup
Effects by Period of Time (Early Period and Late Period) by
Subgroup
a. Columns I & II
################ FULL SAMPLE ##################
## RACE
## Test for Relationship Between Examined and Year
tabyl(remir_all,examine12_race_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_race_short, remir_all$dyear, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_race_short and remir_all$dyear
## X-squared = 7.425, df = 2, p-value = 0.02442
## ETHNICTY
## Test for Relationship Between Examined and Year
tabyl(remir_all,examine12_ethnic_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_ethnic_short, remir_all$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_ethnic_short and remir_all$dyear
## X-squared = 16.151, df = 2, p-value = 0.0003111
## GENDER
## Test for Relationship Between Examined and Year
tabyl(remir_all,examine12_gender_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_gender_short, remir_all$dyear, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_gender_short and remir_all$dyear
## X-squared = 2.9677, df = 2, p-value = 0.2268
## SEX
## Test for Relationship Between Examined and Year
tabyl(remir_all,examine12_sex_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_sex_short, remir_all$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_sex_short and remir_all$dyear
## X-squared = 3.19, df = 1, p-value = 0.07409
## SES
## Test for Relationship Between Examined and Year
tabyl(remir_all,examine12_ses_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_ses_short, remir_all$dyear, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_ses_short and remir_all$dyear
## X-squared = 0.19515, df = 2, p-value = 0.907
## LOCATION
## Test for Relationship Between Examined and Year
tabyl(remir_all,examine12_loc_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_loc_short, remir_all$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_loc_short and remir_all$dyear
## X-squared = 2.5602, df = 1, p-value = 0.1096
## NATIVITY
## Test for Relationship Between Examined and Year
tabyl(remir_all, examine12_nat_short, dyear) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_all$examine12_nat_short, remir_all$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_all$examine12_nat_short and remir_all$dyear
## X-squared = 0.63345, df = 1, p-value = 0.4261
b. Columns III & IV
################ US SAMPLE ##################
## RACE
## Test for Relationship Between Examined and Year
tabyl(remir_us,examine12_race_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_race_short, remir_us$dyear, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_race_short and remir_us$dyear
## X-squared = 7.4228, df = 2, p-value = 0.02444
## ETHNICTY
## Test for Relationship Between Examined and Year
tabyl(remir_us,examine12_ethnic_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_ethnic_short, remir_us$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_ethnic_short and remir_us$dyear
## X-squared = 16.564, df = 2, p-value = 0.000253
## GENDER
## Test for Relationship Between Examined and Year
tabyl(remir_us,examine12_gender_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_gender_short, remir_us$dyear, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_gender_short and remir_us$dyear
## X-squared = 1.5242, df = 2, p-value = 0.4667
## SEX
## Test for Relationship Between Examined and Year
tabyl(remir_us,examine12_sex_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_sex_short, remir_us$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_sex_short and remir_us$dyear
## X-squared = 3.1879, df = 1, p-value = 0.07419
## SES
## Test for Relationship Between Examined and Year
tabyl(remir_us,examine12_ses_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_ses_short, remir_us$dyear, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_ses_short and remir_us$dyear
## X-squared = 1.5377, df = 2, p-value = 0.4635
## LOCATION
## Test for Relationship Between Examined and Year
tabyl(remir_us,examine12_loc_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_loc_short, remir_us$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_loc_short and remir_us$dyear
## X-squared = 2.5735, df = 1, p-value = 0.1087
## NATIVITY
## Test for Relationship Between Examined and Year
tabyl(remir_us, examine12_nat_short, dyear) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us$examine12_nat_short, remir_us$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us$examine12_nat_short and remir_us$dyear
## X-squared = 0.6353, df = 1, p-value = 0.4254
c. Columns V & VI
################ US SUBGROUP SAMPLE ##################
## RACE
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup,examine12_race_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_race_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_race_short and remir_us_subgroup$dyear
## X-squared = 6.0621, df = 2, p-value = 0.04826
## ETHNICTY
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup,examine12_ethnic_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_ethnic_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_ethnic_short and remir_us_subgroup$dyear
## X-squared = 4.2895, df = 2, p-value = 0.1171
## GENDER
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup,examine12_gender_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_gender_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_gender_short and remir_us_subgroup$dyear
## X-squared = 4.7829, df = 2, p-value = 0.0915
## SEX
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup,examine12_sex_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_sex_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_sex_short and remir_us_subgroup$dyear
## X-squared = 2.7053, df = 1, p-value = 0.1
## SES
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup,examine12_ses_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_ses_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_ses_short and remir_us_subgroup$dyear
## X-squared = 1.3173, df = 2, p-value = 0.5176
## Location
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup,examine12_loc_short, dyear ) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_loc_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_loc_short and remir_us_subgroup$dyear
## X-squared = 3.1433, df = 1, p-value = 0.07624
## Nativity
## Test for Relationship Between Examined and Year
tabyl(remir_us_subgroup, examine12_nat_short, dyear) %>%
adorn_percentages("col") %>% adorn_pct_formatting(rounding = "half up", digits = 1)
chisq.test(remir_us_subgroup$examine12_nat_short, remir_us_subgroup$dyear, correct=FALSE)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: remir_us_subgroup$examine12_nat_short and remir_us_subgroup$dyear
## X-squared = 0.76201, df = 1, p-value = 0.3827