Sesión 4.1

Preparación

library(stargazer)
library(officer)
library(flextable)
library(haven)
library(Hmisc)
library(jtools)

Model 1

bdatos1 <- read_dta("base_datos_1.dta")
modelo1 <- lm(ventas ~ gasto_marketing, data = bdatos1)
summ(modelo1)
Observations 70
Dependent variable ventas
Type OLS linear regression
F(1,68) 22.46
0.25
Adj. R² 0.24
Est. S.E. t val. p
(Intercept) 19015.77 2374.35 8.01 0.00
gasto_marketing 2.23 0.47 4.74 0.00
Standard errors: OLS

Model 2

bdatos2 <- read_dta("base_datos_2.dta")
modelo2 <- lm(beneficio ~ costos_produccion, data = bdatos2)
summ(modelo2)
Observations 70
Dependent variable beneficio
Type OLS linear regression
F(1,68) 238.48
0.78
Adj. R² 0.77
Est. S.E. t val. p
(Intercept) 47224.45 1308.57 36.09 0.00
costos_produccion -1.31 0.08 -15.44 0.00
Standard errors: OLS

Model 3

bdatos3 <- read_dta("base_datos_3.dta")
modelo3 <- lm(satisfaccion_cliente ~ calidad_producto, data = bdatos3)
summ(modelo3)
Observations 70
Dependent variable satisfaccion_cliente
Type OLS linear regression
F(1,68) 439.46
0.87
Adj. R² 0.86
Est. S.E. t val. p
(Intercept) 52.89 3.82 13.86 0.00
calidad_producto 9.71 0.46 20.96 0.00
Standard errors: OLS

Model 4

bdatos4 <- read_dta("base_datos_4.dta")
modelo4 <- lm(productividad ~ horas_capacitacion, data = bdatos4)
summ(modelo4)
Observations 70
Dependent variable productividad
Type OLS linear regression
F(1,68) 29.57
0.30
Adj. R² 0.29
Est. S.E. t val. p
(Intercept) 66.36 5.36 12.38 0.00
horas_capacitacion 0.96 0.18 5.44 0.00
Standard errors: OLS

Model 5

bdatos5 <- read_dta("base_datos_5.dta")
modelo5 <- lm(ingresos ~ gasto_publicidad, data = bdatos5)
summ(modelo5)
Observations 70
Dependent variable ingresos
Type OLS linear regression
F(1,68) 124.84
0.65
Adj. R² 0.64
Est. S.E. t val. p
(Intercept) 39220.11 1648.53 23.79 0.00
gasto_publicidad 1.88 0.17 11.17 0.00
Standard errors: OLS

Model 6

bdatos6 <- read_dta("base_datos_6.dta")
modelo6 <- lm(participacion_mercado ~ precio_producto, data = bdatos6)
summ(modelo6)
Observations 70
Dependent variable participacion_mercado
Type OLS linear regression
F(1,68) 73.23
0.52
Adj. R² 0.51
Est. S.E. t val. p
(Intercept) 487.49 24.10 20.23 0.00
precio_producto -3.90 0.46 -8.56 0.00
Standard errors: OLS

Model 7

bdatos7 <- read_dta("base_datos_7.dta")
modelo7 <- lm(retorno_inversion ~ inversion_investigacion, data = bdatos7)
summ(modelo7)
Observations 70
Dependent variable retorno_inversion
Type OLS linear regression
F(1,68) 125.88
0.65
Adj. R² 0.64
Est. S.E. t val. p
(Intercept) 30622.00 1860.26 16.46 0.00
inversion_investigacion 0.10 0.01 11.22 0.00
Standard errors: OLS

Model 8

bdatos8 <- read_dta("base_datos_8.dta")
modelo8 <- lm(costo_adquisicion ~ gasto_publicidad_adquisicion, data = bdatos8)
summ(modelo8)
Observations 70
Dependent variable costo_adquisicion
Type OLS linear regression
F(1,68) 52.07
0.43
Adj. R² 0.43
Est. S.E. t val. p
(Intercept) 1661.16 164.93 10.07 0.00
gasto_publicidad_adquisicion -0.58 0.08 -7.22 0.00
Standard errors: OLS

Model 9

bdatos9 <- read_dta("base_datos_9.dta")
modelo9 <- lm(tasa_conversion ~ experiencia_usuario, data = bdatos9)
summ(modelo9)
Observations 70
Dependent variable tasa_conversion
Type OLS linear regression
F(1,68) 555.71
0.89
Adj. R² 0.89
Est. S.E. t val. p
(Intercept) -0.17 0.12 -1.45 0.15
experiencia_usuario 0.54 0.02 23.57 0.00
Standard errors: OLS

Model 10

bdatos10 <- read_dta("base_datos_10.dta")
modelo10 <- lm(crecimiento_ventas ~ estrategia_precios, data = bdatos10)
summ(modelo10)
Observations 70
Dependent variable crecimiento_ventas
Type OLS linear regression
F(1,68) 32.52
0.32
Adj. R² 0.31
Est. S.E. t val. p
(Intercept) 5002.33 179.45 27.88 0.00
estrategia_precios 9.93 1.74 5.70 0.00
Standard errors: OLS