Instalar paquetes y llamar librerías

#install.packages("riem")
library(riem)
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#install.packages("ggplot2")
library(ggplot2)
#install.packages("lubridate")
library(lubridate)

Obtener y graficar la informacións

# PASO 1. Buscar red (país) - Ejemplo México, y copiar CODE
# view(riem_networks())
# PASO 2. Buscar la estación (ciudad) - Ejemplo: Monterrey, y copiar ID
# view(riem_stations("MX__ASOS"))
#PASO 3. Obtener información de la estación
monterrey <- riem_measures("MMMY")

summary(monterrey)
##    station              valid                             lon        
##  Length:95893       Min.   :2014-01-01 00:16:00.00   Min.   :-100.1  
##  Class :character   1st Qu.:2016-09-03 19:50:00.00   1st Qu.:-100.1  
##  Mode  :character   Median :2019-05-03 01:41:00.00   Median :-100.1  
##                     Mean   :2019-05-12 00:07:10.50   Mean   :-100.1  
##                     3rd Qu.:2022-01-20 05:40:00.00   3rd Qu.:-100.1  
##                     Max.   :2024-09-10 23:40:00.00   Max.   :-100.1  
##                                                                      
##       lat             tmpf             dwpf            relh       
##  Min.   :25.78   Min.   : 23.00   Min.   :-5.80   Min.   :  2.32  
##  1st Qu.:25.78   1st Qu.: 64.40   1st Qu.:51.80   1st Qu.: 48.32  
##  Median :25.78   Median : 73.40   Median :62.60   Median : 69.14  
##  Mean   :25.78   Mean   : 72.66   Mean   :58.24   Mean   : 65.41  
##  3rd Qu.:25.78   3rd Qu.: 82.40   3rd Qu.:68.00   3rd Qu.: 83.44  
##  Max.   :25.78   Max.   :111.20   Max.   :86.00   Max.   :100.00  
##                  NA's   :137      NA's   :1734    NA's   :1779    
##       drct            sknt             p01i        alti            mslp       
##  Min.   :  0.0   Min.   : 0.000   Min.   :0   Min.   : 0.04   Min.   : 913.2  
##  1st Qu.: 70.0   1st Qu.: 4.000   1st Qu.:0   1st Qu.:29.87   1st Qu.:1011.4  
##  Median :110.0   Median : 5.000   Median :0   Median :29.97   Median :1014.4  
##  Mean   :131.1   Mean   : 5.844   Mean   :0   Mean   :29.97   Mean   :1015.2  
##  3rd Qu.:160.0   3rd Qu.: 8.000   3rd Qu.:0   3rd Qu.:30.07   3rd Qu.:1018.1  
##  Max.   :360.0   Max.   :98.000   Max.   :0   Max.   :30.81   Max.   :1103.4  
##  NA's   :73      NA's   :73                   NA's   :28      NA's   :84045   
##       vsby             gust           skyc1              skyc2          
##  Min.   : 0.000   Min.   : 13.00   Length:95893       Length:95893      
##  1st Qu.: 6.000   1st Qu.: 20.00   Class :character   Class :character  
##  Median :10.000   Median : 24.00   Mode  :character   Mode  :character  
##  Mean   : 8.938   Mean   : 24.31                                        
##  3rd Qu.:12.000   3rd Qu.: 27.00                                        
##  Max.   :40.000   Max.   :210.00                                        
##  NA's   :32       NA's   :92793                                         
##     skyc3              skyc4               skyl1           skyl2      
##  Length:95893       Length:95893       Min.   :    0   Min.   :    0  
##  Class :character   Class :character   1st Qu.: 1500   1st Qu.: 2000  
##  Mode  :character   Mode  :character   Median : 3000   Median : 7000  
##                                        Mean   : 5348   Mean   : 8034  
##                                        3rd Qu.: 7000   3rd Qu.:10000  
##                                        Max.   :37000   Max.   :30000  
##                                        NA's   :29104   NA's   :64555  
##      skyl3           skyl4         wxcodes          ice_accretion_1hr
##  Min.   :  400   Min.   : 3000   Length:95893       Mode:logical     
##  1st Qu.: 8000   1st Qu.:20000   Class :character   NA's:95893       
##  Median :20000   Median :20000   Mode  :character                    
##  Mean   :14721   Mean   :20646                                       
##  3rd Qu.:20000   3rd Qu.:25000                                       
##  Max.   :30000   Max.   :25000                                       
##  NA's   :90513   NA's   :95695                                       
##  ice_accretion_3hr ice_accretion_6hr peak_wind_gust peak_wind_drct
##  Mode:logical      Mode:logical      Mode:logical   Mode:logical  
##  NA's:95893        NA's:95893        NA's:95893     NA's:95893    
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  peak_wind_time      feel           metar           snowdepth     
##  Mode:logical   Min.   :  9.11   Length:95893       Mode:logical  
##  NA's:95893     1st Qu.: 64.40   Class :character   NA's:95893    
##                 Median : 73.79   Mode  :character                 
##                 Mean   : 73.36                                    
##                 3rd Qu.: 83.90                                    
##                 Max.   :131.06                                    
##                 NA's   :1782
str(monterrey)
## tibble [95,893 × 32] (S3: tbl_df/tbl/data.frame)
##  $ station          : chr [1:95893] "MMMY" "MMMY" "MMMY" "MMMY" ...
##  $ valid            : POSIXct[1:95893], format: "2014-01-01 00:16:00" "2014-01-01 00:49:00" ...
##  $ lon              : num [1:95893] -100 -100 -100 -100 -100 ...
##  $ lat              : num [1:95893] 25.8 25.8 25.8 25.8 25.8 ...
##  $ tmpf             : num [1:95893] 48.2 48.2 48.2 46.4 46.4 46.4 46.4 46.4 46.4 46.4 ...
##  $ dwpf             : num [1:95893] 46.4 46.4 46.4 46.4 46.4 44.6 44.6 44.6 44.6 44.6 ...
##  $ relh             : num [1:95893] 93.5 93.5 93.5 100 100 ...
##  $ drct             : num [1:95893] 0 120 120 120 110 100 110 130 60 0 ...
##  $ sknt             : num [1:95893] 0 3 5 6 5 5 4 3 3 0 ...
##  $ p01i             : num [1:95893] 0 0 0 0 0 0 0 0 0 0 ...
##  $ alti             : num [1:95893] 30.3 30.3 30.3 30.3 30.3 ...
##  $ mslp             : num [1:95893] NA NA NA NA NA ...
##  $ vsby             : num [1:95893] 4 3 1 0.25 0.12 0.12 0.06 0.06 0.06 0.12 ...
##  $ gust             : num [1:95893] NA NA NA NA NA NA NA NA NA NA ...
##  $ skyc1            : chr [1:95893] "SCT" "SCT" "SCT" "VV " ...
##  $ skyc2            : chr [1:95893] "BKN" "BKN" "BKN" NA ...
##  $ skyc3            : chr [1:95893] "OVC" "OVC" "OVC" NA ...
##  $ skyc4            : chr [1:95893] NA NA NA NA ...
##  $ skyl1            : num [1:95893] 700 300 200 200 100 100 100 100 100 100 ...
##  $ skyl2            : num [1:95893] 1200 400 300 NA NA NA NA NA NA NA ...
##  $ skyl3            : num [1:95893] 4000 900 500 NA NA NA NA NA NA NA ...
##  $ skyl4            : num [1:95893] NA NA NA NA NA NA NA NA NA NA ...
##  $ wxcodes          : chr [1:95893] NA "BR" "BR" "FG" ...
##  $ ice_accretion_1hr: logi [1:95893] NA NA NA NA NA NA ...
##  $ ice_accretion_3hr: logi [1:95893] NA NA NA NA NA NA ...
##  $ ice_accretion_6hr: logi [1:95893] NA NA NA NA NA NA ...
##  $ peak_wind_gust   : logi [1:95893] NA NA NA NA NA NA ...
##  $ peak_wind_drct   : logi [1:95893] NA NA NA NA NA NA ...
##  $ peak_wind_time   : logi [1:95893] NA NA NA NA NA NA ...
##  $ feel             : num [1:95893] 48.2 47.2 45.6 42.9 43.5 ...
##  $ metar            : chr [1:95893] "MMMY 010016Z 00000KT 4SM SCT007 BKN012 OVC040 09/08 A3028 RMK 8/5// BR" "MMMY 010049Z 12003KT 3SM BR SCT003 BKN004 OVC009 09/08 A3028 RMK 8/5// -DZ OCNL" "MMMY 010116Z 12005KT 1SM BR SCT002 BKN003 OVC005 09/08 A3028 RMK 8/6// -DZ OCNL" "MMMY 010120Z 12006KT 1/4SM FG VV002 08/08 A3029 RMK 8//// BC FG MOV SE/NW" ...
##  $ snowdepth        : logi [1:95893] NA NA NA NA NA NA ...
#Filtrar información del último mes
mty_ago_24 <- subset(monterrey, valid >= as.POSIXct("2024-08-01 00:00") & valid <= as.POSIXct("2024-08-31 23:59"))

#Ejercicio 1: Realizar una grádica de barras de la temperatura promedio diario en agosto en Monterrey en ºC.

promedio <- mty_ago_24 %>%
  mutate(fecha= as.Date(valid)) %>%
  group_by(fecha) %>%
  summarize(temp_promedio = mean(tmpf, nar.rm=TRUE))

promedio$tempc <- (promedio$temp_promedio-32)/1.8

ggplot(promedio, aes(x = fecha, y = tempc)) + 
  geom_col(fill = "blue") +
  labs(title="Temperatura Promedio en Monterrey durante Agosto 2024", x = "Fecha", y = "Temperatura (ºC)") +
  geom_text(aes(label=round(tempc,0)), vjust = -0.5,size = 3)

LS0tCnRpdGxlOiAiQVNPUyIKYXV0aG9yOiAiQW5kcmVhIFJpbyBDYW1hY2hvIEEwMDgzMjgzNiIKZGF0ZTogIjIwMjQtMDktMTEiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogZGFya2x5Ci0tLQoKIVtdKC9jbG91ZC9wcm9qZWN0L2NsaW1hIHBuZy5wbmcpCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93OyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4KYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJyaWVtIikKbGlicmFyeShyaWVtKQojaW5zdGFsbC5wYWNrYWdlcygidGlkeXZlcnNlIikKbGlicmFyeSh0aWR5dmVyc2UpCiNpbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikKbGlicmFyeShnZ3Bsb3QyKQojaW5zdGFsbC5wYWNrYWdlcygibHVicmlkYXRlIikKbGlicmFyeShsdWJyaWRhdGUpCmBgYAojIDxzcGFuIHN0eWxlPSJjb2xvcjogeWVsbG93OyI+T2J0ZW5lciB5IGdyYWZpY2FyIGxhIGluZm9ybWFjacOzbnM8L3NwYW4+CmBgYHtyfQojIFBBU08gMS4gQnVzY2FyIHJlZCAocGHDrXMpIC0gRWplbXBsbyBNw6l4aWNvLCB5IGNvcGlhciBDT0RFCiMgdmlldyhyaWVtX25ldHdvcmtzKCkpCiMgUEFTTyAyLiBCdXNjYXIgbGEgZXN0YWNpw7NuIChjaXVkYWQpIC0gRWplbXBsbzogTW9udGVycmV5LCB5IGNvcGlhciBJRAojIHZpZXcocmllbV9zdGF0aW9ucygiTVhfX0FTT1MiKSkKI1BBU08gMy4gT2J0ZW5lciBpbmZvcm1hY2nDs24gZGUgbGEgZXN0YWNpw7NuCm1vbnRlcnJleSA8LSByaWVtX21lYXN1cmVzKCJNTU1ZIikKCnN1bW1hcnkobW9udGVycmV5KQpzdHIobW9udGVycmV5KQoKI0ZpbHRyYXIgaW5mb3JtYWNpw7NuIGRlbCDDumx0aW1vIG1lcwptdHlfYWdvXzI0IDwtIHN1YnNldChtb250ZXJyZXksIHZhbGlkID49IGFzLlBPU0lYY3QoIjIwMjQtMDgtMDEgMDA6MDAiKSAmIHZhbGlkIDw9IGFzLlBPU0lYY3QoIjIwMjQtMDgtMzEgMjM6NTkiKSkKCiNFamVyY2ljaW8gMTogUmVhbGl6YXIgdW5hIGdyw6FkaWNhIGRlIGJhcnJhcyBkZSBsYSB0ZW1wZXJhdHVyYSBwcm9tZWRpbyBkaWFyaW8gZW4gYWdvc3RvIGVuIE1vbnRlcnJleSBlbiDCukMuCgpwcm9tZWRpbyA8LSBtdHlfYWdvXzI0ICU+JQogIG11dGF0ZShmZWNoYT0gYXMuRGF0ZSh2YWxpZCkpICU+JQogIGdyb3VwX2J5KGZlY2hhKSAlPiUKICBzdW1tYXJpemUodGVtcF9wcm9tZWRpbyA9IG1lYW4odG1wZiwgbmFyLnJtPVRSVUUpKQoKcHJvbWVkaW8kdGVtcGMgPC0gKHByb21lZGlvJHRlbXBfcHJvbWVkaW8tMzIpLzEuOAoKZ2dwbG90KHByb21lZGlvLCBhZXMoeCA9IGZlY2hhLCB5ID0gdGVtcGMpKSArIAogIGdlb21fY29sKGZpbGwgPSAiYmx1ZSIpICsKICBsYWJzKHRpdGxlPSJUZW1wZXJhdHVyYSBQcm9tZWRpbyBlbiBNb250ZXJyZXkgZHVyYW50ZSBBZ29zdG8gMjAyNCIsIHggPSAiRmVjaGEiLCB5ID0gIlRlbXBlcmF0dXJhICjCukMpIikgKwogIGdlb21fdGV4dChhZXMobGFiZWw9cm91bmQodGVtcGMsMCkpLCB2anVzdCA9IC0wLjUsc2l6ZSA9IDMpCgo=