Introducción

Los datos del World Bank Indicators (WBI) son una fuente completa de indicadores económicos,sociales y medioambientales de mÔs de 200 países.
Fuente: World Bank

Instalar paquetes y llamar librerĆ­as

#install.packages("WDI")
library (WDI)
#install.packages("wbstats")
library (wbstats)
#install.packages("tidyverse")
library (tidyverse)
#install.packages("ggplot2")
library (ggplot2)

Información de 1 país

gdp_mexico <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date=1900, end_date=2024)
# (ISO3166-2 country codes)
summary (gdp_mexico)
##     iso2c              iso3c             country               date     
##  Length:64          Length:64          Length:64          Min.   :1960  
##  Class :character   Class :character   Class :character   1st Qu.:1976  
##  Mode  :character   Mode  :character   Mode  :character   Median :1992  
##                                                           Mean   :1992  
##                                                           3rd Qu.:2007  
##                                                           Max.   :2023  
##  NY.GDP.PCAP.CD        unit            obs_status          footnote        
##  Min.   :  359.5   Length:64          Length:64          Length:64         
##  1st Qu.: 1431.5   Class :character   Class :character   Class :character  
##  Median : 4017.8   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 5132.1                                                           
##  3rd Qu.: 8959.9                                                           
##  Max.   :13926.1                                                           
##   last_updated       
##  Min.   :2024-06-28  
##  1st Qu.:2024-06-28  
##  Median :2024-06-28  
##  Mean   :2024-06-28  
##  3rd Qu.:2024-06-28  
##  Max.   :2024-06-28
head(gdp_mexico)
## # A tibble: 6 Ɨ 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   1960           360. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   1961           378. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   1962           393. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   1963           424. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   1964           486. <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   1965           511. <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
tail(gdp_mexico)
## # A tibble: 6 Ɨ 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   2018         10130. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   2019         10435. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   2020          8896. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   2021         10363. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   2022         11477. <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   2023         13926. <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
ggplot(gdp_mexico, aes(x= date, y = NY.GDP.PCAP.CD)) +
  geom_point()

ggplot(gdp_mexico, aes(x= date, y = NY.GDP.PCAP.CD)) +
  geom_col(fill = "pink") +
  geom_point(color = "darkblue")+
  labs(title="Producto Interno Bruto en MƩxico (US per CƔpita)", x = "AƱo", y = "PIB")

# Información de varios países

gdp_varios <- wb_data(country = c("MX", "EC", "CL"), indicator = "NY.GDP.PCAP.CD", start_date=1900, end_date=2024)

ggplot(gdp_varios, aes(x=date, y=NY.GDP.PCAP.CD, color=country))+
  geom_point()

LS0tDQp0aXRsZTogIldvcmxkIEJhbmsiDQphdXRob3I6ICJBbWJlciBBZ3VpbGFyIEEwMDgzNTk1OCINCmRhdGU6ICIyMDI0LTA5LTExIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IHlldGkNCi0tLQ0KDQohW10oQzpcXFVzZXJzXFxhbWJlclxcRG93bmxvYWRzXFxXb3JsZC1CYW5rLTEwMjR4NTcwLTEuanBnKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkludHJvZHVjY2nDs248L3NwYW4+DQpMb3MgZGF0b3MgZGVsICpXb3JsZCBCYW5rIEluZGljYXRvcnMgKFdCSSkqIHNvbiB1bmEgZnVlbnRlIGNvbXBsZXRhIGRlIGluZGljYWRvcmVzICoqZWNvbsOzbWljb3MqKiwqKnNvY2lhbGVzKiogeSAqKm1lZGlvYW1iaWVudGFsZXMqKiBkZSBtw6FzIGRlIDIwMCBwYcOtc2VzLiAgDQpbRnVlbnRlOiBXb3JsZCBCYW5rXShodHRwczovL2RhdG9zLmJhbmNvbXVuZGlhbC5vcmcvaW5kaWNhZG9yKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXM8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KI2luc3RhbGwucGFja2FnZXMoIldESSIpDQpsaWJyYXJ5IChXREkpDQojaW5zdGFsbC5wYWNrYWdlcygid2JzdGF0cyIpDQpsaWJyYXJ5ICh3YnN0YXRzKQ0KI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQpsaWJyYXJ5ICh0aWR5dmVyc2UpDQojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90MiIpDQpsaWJyYXJ5IChnZ3Bsb3QyKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5mb3JtYWNpw7NuIGRlIDEgcGHDrXM8L3NwYW4+DQpgYGB7cn0NCmdkcF9tZXhpY28gPC0gd2JfZGF0YShjb3VudHJ5ID0gIk1YIiwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZT0xOTAwLCBlbmRfZGF0ZT0yMDI0KQ0KIyAoSVNPMzE2Ni0yIGNvdW50cnkgY29kZXMpDQpzdW1tYXJ5IChnZHBfbWV4aWNvKQ0KaGVhZChnZHBfbWV4aWNvKQ0KdGFpbChnZHBfbWV4aWNvKQ0KDQpnZ3Bsb3QoZ2RwX21leGljbywgYWVzKHg9IGRhdGUsIHkgPSBOWS5HRFAuUENBUC5DRCkpICsNCiAgZ2VvbV9wb2ludCgpDQoNCmdncGxvdChnZHBfbWV4aWNvLCBhZXMoeD0gZGF0ZSwgeSA9IE5ZLkdEUC5QQ0FQLkNEKSkgKw0KICBnZW9tX2NvbChmaWxsID0gInBpbmsiKSArDQogIGdlb21fcG9pbnQoY29sb3IgPSAiZGFya2JsdWUiKSsNCiAgbGFicyh0aXRsZT0iUHJvZHVjdG8gSW50ZXJubyBCcnV0byBlbiBNw6l4aWNvIChVUyBwZXIgQ8OhcGl0YSkiLCB4ID0gIkHDsW8iLCB5ID0gIlBJQiIpDQoNCmBgYA0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5JbmZvcm1hY2nDs24gZGUgdmFyaW9zIHBhw61zZXM8L3NwYW4+DQpgYGB7cn0NCmdkcF92YXJpb3MgPC0gd2JfZGF0YShjb3VudHJ5ID0gYygiTVgiLCAiRUMiLCAiQ0wiKSwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZT0xOTAwLCBlbmRfZGF0ZT0yMDI0KQ0KDQpnZ3Bsb3QoZ2RwX3ZhcmlvcywgYWVzKHg9ZGF0ZSwgeT1OWS5HRFAuUENBUC5DRCwgY29sb3I9Y291bnRyeSkpKw0KICBnZW9tX3BvaW50KCkNCmBgYA0KDQo=