Introducción

Los datos del World Bank Indicators (WBI), son una fuente completa de indicadores económicos, sociales y medioambientales de más de 200 países.
Fuente: WBI

Librerías

#install.packages("WDI")
#install.packages("wbstats")
#install.packages("ggplot2")
library(WDI)
library(wbstats)
library(tidyverse)
library(ggplot2)

PIB de 1 país

gdp_mex <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date = 1900, end_date = 2024)
#(ISO3166-2 country codes)
summary(gdp_mex)
##     iso2c              iso3c             country               date     
##  Length:64          Length:64          Length:64          Min.   :1960  
##  Class :character   Class :character   Class :character   1st Qu.:1976  
##  Mode  :character   Mode  :character   Mode  :character   Median :1992  
##                                                           Mean   :1992  
##                                                           3rd Qu.:2007  
##                                                           Max.   :2023  
##  NY.GDP.PCAP.CD        unit            obs_status          footnote        
##  Min.   :  359.5   Length:64          Length:64          Length:64         
##  1st Qu.: 1431.5   Class :character   Class :character   Class :character  
##  Median : 4017.8   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 5132.1                                                           
##  3rd Qu.: 8959.9                                                           
##  Max.   :13926.1                                                           
##   last_updated       
##  Min.   :2024-06-28  
##  1st Qu.:2024-06-28  
##  Median :2024-06-28  
##  Mean   :2024-06-28  
##  3rd Qu.:2024-06-28  
##  Max.   :2024-06-28
head(gdp_mex)
## # A tibble: 6 × 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   1960           360. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   1961           378. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   1962           393. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   1963           424. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   1964           486. <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   1965           511. <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
tail(gdp_mex)
## # A tibble: 6 × 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   2018         10130. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   2019         10435. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   2020          8896. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   2021         10363. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   2022         11477. <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   2023         13926. <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
ggplot(gdp_mex, aes(x=date, y=NY.GDP.PCAP.CD))+
        geom_path(fill="blue")
## Warning in geom_path(fill = "blue"): Ignoring unknown parameters: `fill`

ggplot(gdp_mex, aes(x=date, y=NY.GDP.PCAP.CD))+
        geom_point(color="red")

ggplot(gdp_mex, aes(x=date, y=NY.GDP.PCAP.CD))+
        geom_col(fill="black")+
        geom_point(color="cyan")+
        labs(title="Producto Interno Bruto (US per Capita", x = "Años", y = "PIB per cápita")

Información de varios países

gdp_varios <- wb_data(country = c("MX","EC","CL","BR","AR","CO"), indicator = "NY.GDP.PCAP.CD", start_date = 1900, end_date = 2024)

ggplot(gdp_varios, aes(x=date, y=NY.GDP.PCAP.CD, color=country))+
        geom_path()
## Warning: Removed 52 rows containing missing values or values outside the scale range
## (`geom_path()`).

LS0tCnRpdGxlOiAiV29ybGQgQmFuayIKYXV0aG9yOiAiRGllZ28gU2FsYXphciBBMDA4MzU2MjgiCmRhdGU6ICIyMDI0LTA5LTExIgpvdXRwdXQ6IAogICAgICAgIGh0bWxfZG9jdW1lbnQ6CiAgICAgICAgICAgICAgICB0b2M6IFRSVUUgI1RhYmxhIGRlIGNvbnRlbmlkb3MKICAgICAgICAgICAgICAgIHRvY19mbG9hdDogVFJVRSAjVGFibGEgZmxvdGFudGUKICAgICAgICAgICAgICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUgI0Rpc3BvbmliaWxpZGFkIGRlIGRlc2NhcmdhciBjw7NkaWdvcwogICAgICAgICAgICAgICAgdGhlbWU6IHlldGkKZWRpdG9yX29wdGlvbnM6IAogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlCi0tLQoKIVtdKC9Vc2Vycy9kaWVnb3NhbGF6YXIvRG9jdW1lbnRzL0Jvb3RjYW1wX1IvV29ybGQtQmFuay5naWYpCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkludHJvZHVjY2nDs248L3NwYW4+CkxvcyBkYXRvcyBkZWwgKldvcmxkIEJhbmsgSW5kaWNhdG9ycyAoV0JJKSosIHNvbiB1bmEgZnVlbnRlIGNvbXBsZXRhIGRlIGluZGljYWRvcmVzICoqZWNvbsOzbWljb3MsIHNvY2lhbGVzIHkgbWVkaW9hbWJpZW50YWxlcyoqIGRlIG3DoXMgZGUgMjAwIHBhw61zZXMuICAKW0Z1ZW50ZTogV0JJXShodHRwczovL2RhdG9zLmJhbmNvbXVuZGlhbC5vcmcvaW5kaWNhZG9yP3RhYj1hbGwpCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkxpYnJlcsOtYXM8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiNpbnN0YWxsLnBhY2thZ2VzKCJXREkiKQojaW5zdGFsbC5wYWNrYWdlcygid2JzdGF0cyIpCiNpbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikKbGlicmFyeShXREkpCmxpYnJhcnkod2JzdGF0cykKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZ2dwbG90MikKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlBJQiBkZSAxIHBhw61zPC9zcGFuPgpgYGB7cn0KZ2RwX21leCA8LSB3Yl9kYXRhKGNvdW50cnkgPSAiTVgiLCBpbmRpY2F0b3IgPSAiTlkuR0RQLlBDQVAuQ0QiLCBzdGFydF9kYXRlID0gMTkwMCwgZW5kX2RhdGUgPSAyMDI0KQojKElTTzMxNjYtMiBjb3VudHJ5IGNvZGVzKQpzdW1tYXJ5KGdkcF9tZXgpCmhlYWQoZ2RwX21leCkKdGFpbChnZHBfbWV4KQpgYGAKCmBgYHtyfQpnZ3Bsb3QoZ2RwX21leCwgYWVzKHg9ZGF0ZSwgeT1OWS5HRFAuUENBUC5DRCkpKwogICAgICAgIGdlb21fcGF0aChmaWxsPSJibHVlIikKZ2dwbG90KGdkcF9tZXgsIGFlcyh4PWRhdGUsIHk9TlkuR0RQLlBDQVAuQ0QpKSsKICAgICAgICBnZW9tX3BvaW50KGNvbG9yPSJyZWQiKQpnZ3Bsb3QoZ2RwX21leCwgYWVzKHg9ZGF0ZSwgeT1OWS5HRFAuUENBUC5DRCkpKwogICAgICAgIGdlb21fY29sKGZpbGw9ImJsYWNrIikrCiAgICAgICAgZ2VvbV9wb2ludChjb2xvcj0iY3lhbiIpKwogICAgICAgIGxhYnModGl0bGU9IlByb2R1Y3RvIEludGVybm8gQnJ1dG8gKFVTIHBlciBDYXBpdGEiLCB4ID0gIkHDsW9zIiwgeSA9ICJQSUIgcGVyIGPDoXBpdGEiKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5mb3JtYWNpw7NuIGRlIHZhcmlvcyBwYcOtc2VzPC9zcGFuPgpgYGB7cn0KZ2RwX3ZhcmlvcyA8LSB3Yl9kYXRhKGNvdW50cnkgPSBjKCJNWCIsIkVDIiwiQ0wiLCJCUiIsIkFSIiwiQ08iKSwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZSA9IDE5MDAsIGVuZF9kYXRlID0gMjAyNCkKCmdncGxvdChnZHBfdmFyaW9zLCBhZXMoeD1kYXRlLCB5PU5ZLkdEUC5QQ0FQLkNELCBjb2xvcj1jb3VudHJ5KSkrCiAgICAgICAgZ2VvbV9wYXRoKCkKYGBgCgoK