Introducción

Los datos del World Bank Indicators (WBI) son una fuente completa de indicadores económicos, sociales y medioambientales de mÔs de 200 países.
Fuente: WB

Instalar paquetes y llamar librerĆ­as

# install.packages("WDI")
library(WDI)
# install.packages("wbstats")
library(wbstats)
# install.packages("tidyverse")
library(tidyverse)
# install.packages("ggplot2")
library(ggplot2)

Información de 1 país

gdp_mexico <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date= 1900, end_date=2024)
# (ISO3166-2 country codes)
summary(gdp_mexico)
##     iso2c              iso3c             country               date     
##  Length:64          Length:64          Length:64          Min.   :1960  
##  Class :character   Class :character   Class :character   1st Qu.:1976  
##  Mode  :character   Mode  :character   Mode  :character   Median :1992  
##                                                           Mean   :1992  
##                                                           3rd Qu.:2007  
##                                                           Max.   :2023  
##  NY.GDP.PCAP.CD        unit            obs_status          footnote        
##  Min.   :  359.5   Length:64          Length:64          Length:64         
##  1st Qu.: 1431.5   Class :character   Class :character   Class :character  
##  Median : 4017.8   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 5132.1                                                           
##  3rd Qu.: 8959.9                                                           
##  Max.   :13926.1                                                           
##   last_updated       
##  Min.   :2024-06-28  
##  1st Qu.:2024-06-28  
##  Median :2024-06-28  
##  Mean   :2024-06-28  
##  3rd Qu.:2024-06-28  
##  Max.   :2024-06-28
head(gdp_mexico)
## # A tibble: 6 Ɨ 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   1960           360. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   1961           378. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   1962           393. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   1963           424. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   1964           486. <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   1965           511. <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
tail(gdp_mexico)
## # A tibble: 6 Ɨ 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   2018         10130. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   2019         10435. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   2020          8896. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   2021         10363. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   2022         11477. <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   2023         13926. <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
ggplot(gdp_mexico, aes(x = date, y = NY.GDP.PCAP.CD)) +
  geom_point()

ggplot(gdp_mexico, aes(x = date, y = NY.GDP.PCAP.CD)) +
  geom_col()

ggplot(gdp_mexico, aes(x = date, y = NY.GDP.PCAP.CD)) +
  geom_col(fill = "cyan") +
  geom_point(color = "blue") +
  labs(title="Producto Interno Bruto en MƩxico (US per Capita)", x = "AƱo", y = "PIB")

Información de varios paises

gdp_varios <- wb_data(country = c("MX","EC","CL"), indicator = "NY.GDP.PCAP.CD", start_date= 1900, end_date=2024)

ggplot(gdp_varios, aes(x=date, y=NY.GDP.PCAP.CD, color=country))+
  geom_point()

LS0tDQp0aXRsZTogIldvcmxkIEJhbmsiDQphdXRob3I6ICJSYXVsIENhbnR1IEEwMTA4NzY4MyINCmRhdGU6ICIyMDI0LTA5LTExIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IHlldGkNCi0tLQ0KDQohW10oQzpcXFVzZXJzXFxyYXVsY1xcT25lRHJpdmVcXEVzY3JpdG9yaW9cXEJvb3RjYW1wIGRlIFByb2dyYW1hY2nDs25cXGJhbmsuZ2lmKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkludHJvZHVjY2nDs248L3NwYW4+DQpMb3MgZGF0b3MgZGVsICpXb3JsZCBCYW5rIEluZGljYXRvcnMgKFdCSSkqIHNvbiB1bmEgZnVlbnRlIGNvbXBsZXRhIGRlIGluZGljYWRvcmVzICoqZWNvbsOzbWljb3MqKiwgKipzb2NpYWxlcyoqIHkgKiptZWRpb2FtYmllbnRhbGVzKiogZGUgbcOhcyBkZSAyMDAgcGHDrXNlcy4gIA0KW0Z1ZW50ZTogV0JdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvcj90YWI9YWxsKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXM8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJXREkiKQ0KbGlicmFyeShXREkpDQojIGluc3RhbGwucGFja2FnZXMoIndic3RhdHMiKQ0KbGlicmFyeSh3YnN0YXRzKQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQojIGluc3RhbGwucGFja2FnZXMoImdncGxvdDIiKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5mb3JtYWNpw7NuIGRlIDEgcGHDrXM8L3NwYW4+DQpgYGB7cn0NCmdkcF9tZXhpY28gPC0gd2JfZGF0YShjb3VudHJ5ID0gIk1YIiwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZT0gMTkwMCwgZW5kX2RhdGU9MjAyNCkNCiMgKElTTzMxNjYtMiBjb3VudHJ5IGNvZGVzKQ0Kc3VtbWFyeShnZHBfbWV4aWNvKQ0KaGVhZChnZHBfbWV4aWNvKQ0KdGFpbChnZHBfbWV4aWNvKQ0KDQpnZ3Bsb3QoZ2RwX21leGljbywgYWVzKHggPSBkYXRlLCB5ID0gTlkuR0RQLlBDQVAuQ0QpKSArDQogIGdlb21fcG9pbnQoKQ0KDQpnZ3Bsb3QoZ2RwX21leGljbywgYWVzKHggPSBkYXRlLCB5ID0gTlkuR0RQLlBDQVAuQ0QpKSArDQogIGdlb21fY29sKCkNCg0KZ2dwbG90KGdkcF9tZXhpY28sIGFlcyh4ID0gZGF0ZSwgeSA9IE5ZLkdEUC5QQ0FQLkNEKSkgKw0KICBnZW9tX2NvbChmaWxsID0gImN5YW4iKSArDQogIGdlb21fcG9pbnQoY29sb3IgPSAiYmx1ZSIpICsNCiAgbGFicyh0aXRsZT0iUHJvZHVjdG8gSW50ZXJubyBCcnV0byBlbiBNw6l4aWNvIChVUyBwZXIgQ2FwaXRhKSIsIHggPSAiQcOxbyIsIHkgPSAiUElCIikNCg0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5mb3JtYWNpw7NuIGRlIHZhcmlvcyBwYWlzZXM8L3NwYW4+DQpgYGB7cn0NCmdkcF92YXJpb3MgPC0gd2JfZGF0YShjb3VudHJ5ID0gYygiTVgiLCJFQyIsIkNMIiksIGluZGljYXRvciA9ICJOWS5HRFAuUENBUC5DRCIsIHN0YXJ0X2RhdGU9IDE5MDAsIGVuZF9kYXRlPTIwMjQpDQoNCmdncGxvdChnZHBfdmFyaW9zLCBhZXMoeD1kYXRlLCB5PU5ZLkdEUC5QQ0FQLkNELCBjb2xvcj1jb3VudHJ5KSkrDQogIGdlb21fcG9pbnQoKQ0KYGBgDQoNCg==