sum(Pop_2024$Total_population)
[1] 33244414
mean(Pop_2024$Life_expectancy_at_birth)
[1] 61.09091
mean(Pop_2024$Global_fertility_rate)
[1] 4.909091
Pop_2024 <- Pop_2024 %>%
  mutate(northern_region = Province %in% c("Niassa", "Cabo Delgado", "Nampula"))
Pop_2024 %>%
  group_by(northern_region) %>%
  summarise(mean(Life_expectancy_at_birth), median(Life_expectancy_at_birth))
ggplot(Pop_2024, aes(x = Life_expectancy_at_birth, fill = northern_region)) +
  geom_density(alpha = .3)

NA
NA
descr(Pop_2024$Life_expectancy_at_birth)
Descriptive Statistics  
Pop_2024$Life_expectancy_at_birth  
N: 11  

                    Life_expectancy_at_birth
----------------- --------------------------
             Mean                      61.09
          Std.Dev                       9.35
              Min                      53.50
               Q1                      54.80
           Median                      59.00
               Q3                      63.70
              Max                      87.00
              MAD                       6.23
              IQR                       7.00
               CV                       0.15
         Skewness                       1.80
      SE.Skewness                       0.66
         Kurtosis                       2.47
          N.Valid                      11.00
        Pct.Valid                     100.00
ggplot(Pop_2024, aes(x = Life_expectancy_at_birth, fill = northern_region)) +
  geom_density(alpha = .3)

NA
NA
Pop_2024 <- Pop_2024 %>%
  mutate(is_outlier = Life_expectancy_at_birth > 65)
Pop_2024 %>%
  filter(!is_outlier) %>%
  arrange(desc(Life_expectancy_at_birth))
Pop_2024 %>%
  filter(!is_outlier) %>%
  ggplot(aes(x = Life_expectancy_at_birth, fill = northern_region)) +
  geom_density(alpha = .3)

Pop_2024 %>%
   ggplot( aes(x=northern_region, y=Life_expectancy_at_birth, fill=northern_region)) + 
    geom_boxplot() +
    xlab("Province") +
    theme(legend.position="none") +
    xlab("") +
    xlab("")

LS0tDQp0aXRsZTogIlIgVHJhaW5pbmcgLSBudW1lcmljYWwgZGF0YSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KQXV0aG9yOiBKb3ZpdG8gTnVuZXMNCkRhdGU6IDExIFNlcCAyMDI0DQotLS0NCg0KYGBge3J9DQpzdW0oUG9wXzIwMjQkVG90YWxfcG9wdWxhdGlvbikNCm1lYW4oUG9wXzIwMjQkTGlmZV9leHBlY3RhbmN5X2F0X2JpcnRoKQ0KbWVhbihQb3BfMjAyNCRHbG9iYWxfZmVydGlsaXR5X3JhdGUpDQpgYGANCg0KYGBge3J9DQpQb3BfMjAyNCA8LSBQb3BfMjAyNCAlPiUNCiAgbXV0YXRlKG5vcnRoZXJuX3JlZ2lvbiA9IFByb3ZpbmNlICVpbiUgYygiTmlhc3NhIiwgIkNhYm8gRGVsZ2FkbyIsICJOYW1wdWxhIikpDQpgYGANCg0KYGBge3J9DQpQb3BfMjAyNCAlPiUNCiAgZ3JvdXBfYnkobm9ydGhlcm5fcmVnaW9uKSAlPiUNCiAgc3VtbWFyaXNlKG1lYW4oTGlmZV9leHBlY3RhbmN5X2F0X2JpcnRoKSwgbWVkaWFuKExpZmVfZXhwZWN0YW5jeV9hdF9iaXJ0aCkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KFBvcF8yMDI0JExpZmVfZXhwZWN0YW5jeV9hdF9iaXJ0aCkNCmBgYA0KDQpgYGB7cn0NCmRlc2NyKFBvcF8yMDI0JExpZmVfZXhwZWN0YW5jeV9hdF9iaXJ0aCkNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChQb3BfMjAyNCwgYWVzKHggPSBMaWZlX2V4cGVjdGFuY3lfYXRfYmlydGgsIGZpbGwgPSBub3J0aGVybl9yZWdpb24pKSArDQogIGdlb21fZGVuc2l0eShhbHBoYSA9IC4zKQ0KDQoNCmBgYA0KDQpgYGB7cn0NClBvcF8yMDI0IDwtIFBvcF8yMDI0ICU+JQ0KICBtdXRhdGUoaXNfb3V0bGllciA9IExpZmVfZXhwZWN0YW5jeV9hdF9iaXJ0aCA+IDY1KQ0KYGBgDQoNCmBgYHtyfQ0KUG9wXzIwMjQgJT4lDQogIGZpbHRlcighaXNfb3V0bGllcikgJT4lDQogIGFycmFuZ2UoZGVzYyhMaWZlX2V4cGVjdGFuY3lfYXRfYmlydGgpKQ0KYGBgDQoNCmBgYHtyfQ0KUG9wXzIwMjQgJT4lDQogIGZpbHRlcighaXNfb3V0bGllcikgJT4lDQogIGdncGxvdChhZXMoeCA9IExpZmVfZXhwZWN0YW5jeV9hdF9iaXJ0aCwgZmlsbCA9IG5vcnRoZXJuX3JlZ2lvbikpICsNCiAgZ2VvbV9kZW5zaXR5KGFscGhhID0gLjMpDQpgYGANCg0KYGBge3J9DQpQb3BfMjAyNCAlPiUNCiAgIGdncGxvdCggYWVzKHg9bm9ydGhlcm5fcmVnaW9uLCB5PUxpZmVfZXhwZWN0YW5jeV9hdF9iaXJ0aCwgZmlsbD1ub3J0aGVybl9yZWdpb24pKSArIA0KICAgIGdlb21fYm94cGxvdCgpICsNCiAgICB4bGFiKCJQcm92aW5jZSIpICsNCiAgICB0aGVtZShsZWdlbmQucG9zaXRpb249Im5vbmUiKSArDQogICAgeGxhYigiIikgKw0KICAgIHhsYWIoIiIpDQpgYGANCg==