R 2.5

data2.5 <- read.csv("/Users/nicolechen/Desktop/R_proj/For postgrad/Dataset2024forpost/ex2.5.csv")
lm <- lm(y~x1+x2+x3+x4+x5+x6, data = data2.5) #建立回归
summary(lm) #给出回归系数
## 
## Call:
## lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6, data = data2.5)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1696.0  -986.5  -270.6  1032.5  2502.7 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.288e+04  7.501e+04  -0.172  0.86633    
## x1           1.597e+00  2.208e-01   7.233 6.62e-06 ***
## x2           2.760e-02  9.133e-02   0.302  0.76730    
## x3           5.127e-01  5.942e-01   0.863  0.40391    
## x4          -8.074e-02  6.027e-01  -0.134  0.89548    
## x5           1.659e-01  5.319e-02   3.119  0.00814 ** 
## x6           5.194e-01  7.314e-01   0.710  0.49014    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1435 on 13 degrees of freedom
## Multiple R-squared:  0.9996, Adjusted R-squared:  0.9994 
## F-statistic:  5449 on 6 and 13 DF,  p-value: < 2.2e-16

对于以上输出结果可以看出,回归方程的F值为5449,对应的p值是2.2e-16,说明回归方程显著。但t检验对应的p值显示x1和x5显著,但其余变量不显著。

#逐步回归处理不显著的变量
lm <- lm(y~x1+x2+x3+x4+x5+x6, data = data2.5)
lm.step <- step(lm,direction = "both") #进行逐步回归
## Start:  AIC=296.15
## y ~ x1 + x2 + x3 + x4 + x5 + x6
## 
##        Df Sum of Sq       RSS    AIC
## - x4    1     36974  26816409 294.18
## - x2    1    188095  26967530 294.29
## - x6    1   1038959  27818394 294.91
## - x3    1   1533308  28312742 295.26
## <none>               26779435 296.15
## - x5    1  20042169  46821604 305.32
## - x1    1 107776958 134556393 326.44
## 
## Step:  AIC=294.18
## y ~ x1 + x2 + x3 + x5 + x6
## 
##        Df Sum of Sq       RSS    AIC
## - x2    1    210582  27026991 292.33
## - x6    1   1045984  27862392 292.94
## <none>               26816409 294.18
## - x3    1   3909502  30725911 294.90
## + x4    1     36974  26779435 296.15
## - x5    1  31758103  58574512 307.80
## - x1    1 107802170 134618578 324.44
## 
## Step:  AIC=292.33
## y ~ x1 + x3 + x5 + x6
## 
##        Df Sum of Sq       RSS    AIC
## - x6    1   1019260  28046251 291.07
## <none>               27026991 292.33
## + x2    1    210582  26816409 294.18
## + x4    1     59461  26967530 294.29
## - x3    1  10260882  37287873 296.77
## - x5    1  45929206  72956197 310.19
## - x1    1 181638367 208665357 331.21
## 
## Step:  AIC=291.07
## y ~ x1 + x3 + x5
## 
##        Df Sum of Sq       RSS    AIC
## <none>               28046251 291.07
## + x6    1   1019260  27026991 292.33
## + x2    1    183858  27862392 292.94
## + x4    1     43891  28002360 293.04
## - x3    1  11965198  40011449 296.18
## - x5    1  44956437  73002687 308.21
## - x1    1 199336940 227383190 330.93
summary(lm.step)
## 
## Call:
## lm(formula = y ~ x1 + x3 + x5, data = data2.5)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2239.2 -1002.2  -227.8   890.5  2277.9 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.966e+04  1.804e+03 -10.898 8.20e-09 ***
## x1           1.593e+00  1.494e-01  10.664 1.12e-08 ***
## x3           7.018e-01  2.686e-01   2.613 0.018850 *  
## x5           1.492e-01  2.946e-02   5.064 0.000115 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1324 on 16 degrees of freedom
## Multiple R-squared:  0.9996, Adjusted R-squared:  0.9995 
## F-statistic: 1.281e+04 on 3 and 16 DF,  p-value: < 2.2e-16

以上结果表明,当变量只留x1,x3和x5时候,模型的AIC最小,为291.07。注意到x1,x3和x5都是显著的,模型也是显著的,所以得到如下 “最优” 回归方程:y = -1.966e+04 + 1.593e+00x1 + 7.018e-01x3 + 1.492e-01x5

R 2.6

data2.6 <- read.csv("/Users/nicolechen/Desktop/R_proj/For postgrad/Dataset2024forpost/ex2.6.csv")
lm <- lm(y~x1+x2+x3+x4+x5, data = data2.6) #建立回归
summary(lm) #给出回归系数
## 
## Call:
## lm(formula = y ~ x1 + x2 + x3 + x4 + x5, data = data2.6)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -127473  -30072    1477   27211  178017 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 925551.025  72652.402  12.739 1.25e-11 ***
## x1              -2.957      8.675  -0.341   0.7364    
## x2              54.304     22.461   2.418   0.0244 *  
## x3              -4.872      2.466  -1.976   0.0609 .  
## x4            -214.738    301.481  -0.712   0.4838    
## x5             -40.325     25.190  -1.601   0.1237    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61730 on 22 degrees of freedom
## Multiple R-squared:  0.9983, Adjusted R-squared:  0.9979 
## F-statistic:  2610 on 5 and 22 DF,  p-value: < 2.2e-16
#逐步回归处理不显著的变量
lm2.6 <- lm(y~x1+x2+x3+x4+x5, data = data2.6)
lm.step <- step(lm2.6,direction = "both") #进行逐步回归
## Start:  AIC=622.95
## y ~ x1 + x2 + x3 + x4 + x5
## 
##        Df  Sum of Sq        RSS    AIC
## - x1    1 4.4283e+08 8.4267e+10 621.10
## - x4    1 1.9331e+09 8.5757e+10 621.59
## <none>               8.3824e+10 622.95
## - x5    1 9.7646e+09 9.3589e+10 624.04
## - x3    1 1.4871e+10 9.8696e+10 625.53
## - x2    1 2.2271e+10 1.0610e+11 627.55
## 
## Step:  AIC=621.1
## y ~ x2 + x3 + x4 + x5
## 
##        Df  Sum of Sq        RSS    AIC
## - x4    1 4.8556e+09 8.9123e+10 620.67
## <none>               8.4267e+10 621.10
## - x5    1 1.0533e+10 9.4800e+10 622.40
## + x1    1 4.4283e+08 8.3824e+10 622.95
## - x3    1 1.7568e+10 1.0184e+11 624.40
## - x2    1 2.7194e+10 1.1146e+11 626.93
## 
## Step:  AIC=620.67
## y ~ x2 + x3 + x5
## 
##        Df  Sum of Sq        RSS    AIC
## <none>               8.9123e+10 620.67
## + x4    1 4.8556e+09 8.4267e+10 621.10
## + x1    1 3.3653e+09 8.5757e+10 621.59
## - x5    1 6.4854e+10 1.5398e+11 633.98
## - x3    1 1.0085e+11 1.8997e+11 639.86
## - x2    1 1.0533e+11 1.9446e+11 640.52
summary(lm.step)
## 
## Call:
## lm(formula = y ~ x2 + x3 + x5, data = data2.6)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -145386  -28621    1109   29154  185370 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 846790.577  23036.008  36.759  < 2e-16 ***
## x2              65.840     12.362   5.326 1.82e-05 ***
## x3              -6.269      1.203  -5.211 2.44e-05 ***
## x5             -55.068     13.177  -4.179 0.000335 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 60940 on 24 degrees of freedom
## Multiple R-squared:  0.9982, Adjusted R-squared:  0.998 
## F-statistic:  4463 on 3 and 24 DF,  p-value: < 2.2e-16

以上结果表明,当变量只留x2,x3和x5时候,模型的AIC最小,为620.67。注意到x2,x3和x5都是显著的,模型也是显著的,所以得到如下 “最优” 回归方程:y = 846790.577 + 65.840x2 - 6.269x3 - 55.068x5