library(tidyverse) 
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
dataset <-read_delim("C:/Users/MSKR/MASTER'S_ADS/STATISTICS_SEM1/DATA_SET_1.csv", delim = ",")
## Rows: 4424 Columns: 37
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (1): Target
## dbl (36): Marital status, Application mode, Application order, Course, Dayti...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
max_ur<- max(dataset$`Unemployment rate`)
max_ur
## [1] 16.2
mean_ur <- mean(dataset$`Unemployment rate`)

mean_ur
## [1] 11.56614
med_ur<-median(dataset$`Unemployment rate`)
med_ur
## [1] 11.1
sd_ur<-sd(dataset$`Unemployment rate`)
sd_ur
## [1] 2.66385

From the above metrics, we can assume that students who took admission in mode “1”, “17” and “43” have similar range of previous grades before enrolling in to the study program.

The Histogram shows that the majority of the students have their previous grades close to the median and average value of the data observation. Also, it can be assumed visually to have a normal distribution.