title: “Mo ta bien ngay 2” author: “Ngoc Khanh” date: “2024-09-09” output: html_document

ob=read.csv("D:\\Lóp học NCKH\\obesity data.csv")

Viec 2. Mo ta dac diem mau nghien cuu

library(table1)
## 
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
## 
##     units, units<-
table1(~ age + gender + bmi + WBBMC + wbbmd + fat + lean + hypertension + diabetes, data = ob)
Overall
(N=1217)
age
Mean (SD) 47.2 (17.3)
Median [Min, Max] 48.0 [13.0, 88.0]
gender
F 862 (70.8%)
M 355 (29.2%)
bmi
Mean (SD) 22.4 (3.06)
Median [Min, Max] 22.2 [14.5, 37.1]
WBBMC
Mean (SD) 1720 (363)
Median [Min, Max] 1710 [695, 3040]
wbbmd
Mean (SD) 1.01 (0.113)
Median [Min, Max] 1.01 [0.650, 1.35]
fat
Mean (SD) 17300 (5210)
Median [Min, Max] 17000 [4280, 40800]
lean
Mean (SD) 35500 (7030)
Median [Min, Max] 33600 [19100, 63100]
hypertension
Mean (SD) 0.507 (0.500)
Median [Min, Max] 1.00 [0, 1.00]
diabetes
Mean (SD) 0.111 (0.314)
Median [Min, Max] 0 [0, 1.00]

Viec 3. Mo ta cac dac diem mau nghien cuu theo gioi tinh

table1(~ age + bmi + WBBMC + wbbmd + fat + lean + as.factor(hypertension) + as.factor(diabetes) | gender, data = ob)
F
(N=862)
M
(N=355)
Overall
(N=1217)
age
Mean (SD) 48.6 (16.4) 43.7 (18.8) 47.2 (17.3)
Median [Min, Max] 49.0 [14.0, 85.0] 44.0 [13.0, 88.0] 48.0 [13.0, 88.0]
bmi
Mean (SD) 22.3 (3.05) 22.7 (3.04) 22.4 (3.06)
Median [Min, Max] 22.1 [15.2, 37.1] 22.5 [14.5, 34.7] 22.2 [14.5, 37.1]
WBBMC
Mean (SD) 1600 (293) 2030 (336) 1720 (363)
Median [Min, Max] 1610 [695, 2660] 2030 [1190, 3040] 1710 [695, 3040]
wbbmd
Mean (SD) 0.988 (0.111) 1.06 (0.101) 1.01 (0.113)
Median [Min, Max] 0.990 [0.650, 1.35] 1.06 [0.780, 1.34] 1.01 [0.650, 1.35]
fat
Mean (SD) 18200 (4950) 15000 (5110) 17300 (5210)
Median [Min, Max] 17700 [6220, 40800] 15100 [4280, 29900] 17000 [4280, 40800]
lean
Mean (SD) 32000 (3970) 43800 (5820) 35500 (7030)
Median [Min, Max] 31500 [19100, 53400] 43400 [28600, 63100] 33600 [19100, 63100]
as.factor(hypertension)
0 430 (49.9%) 170 (47.9%) 600 (49.3%)
1 432 (50.1%) 185 (52.1%) 617 (50.7%)
as.factor(diabetes)
0 760 (88.2%) 322 (90.7%) 1082 (88.9%)
1 102 (11.8%) 33 (9.3%) 135 (11.1%)

Viec 4. So sanh dac diem mau nghien cuu giua nam va nu

library(compareGroups)
createTable(compareGroups(gender ~ age + bmi + WBBMC + wbbmd + fat + lean + hypertension + diabetes, data = ob))
## 
## --------Summary descriptives table by 'gender'---------
## 
## ________________________________________________ 
##                   F            M       p.overall 
##                 N=862        N=355               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## age          48.6 (16.4)  43.7 (18.8)   <0.001   
## bmi          22.3 (3.05)  22.7 (3.04)    0.013   
## WBBMC         1599 (293)   2030 (336)   <0.001   
## wbbmd        0.99 (0.11)  1.06 (0.10)   <0.001   
## fat          18240 (4954) 14978 (5113)  <0.001   
## lean         32045 (3966) 43762 (5819)  <0.001   
## hypertension 0.50 (0.50)  0.52 (0.50)    0.527   
## diabetes     0.12 (0.32)  0.09 (0.29)    0.181   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
ob$hypert = as.factor(ob$hypertension)
ob$dm = as.factor(ob$diabetes)
createTable(compareGroups(gender ~ age + bmi + WBBMC + wbbmd + fat + lean + hypert + dm, data = ob))
## 
## --------Summary descriptives table by 'gender'---------
## 
## ___________________________________________ 
##              F            M       p.overall 
##            N=862        N=355               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## age     48.6 (16.4)  43.7 (18.8)   <0.001   
## bmi     22.3 (3.05)  22.7 (3.04)    0.013   
## WBBMC    1599 (293)   2030 (336)   <0.001   
## wbbmd   0.99 (0.11)  1.06 (0.10)   <0.001   
## fat     18240 (4954) 14978 (5113)  <0.001   
## lean    32045 (3966) 43762 (5819)  <0.001   
## hypert:                             0.569   
##     0   430 (49.9%)  170 (47.9%)            
##     1   432 (50.1%)  185 (52.1%)            
## dm:                                 0.238   
##     0   760 (88.2%)  322 (90.7%)            
##     1   102 (11.8%)   33 (9.30%)            
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Viec 5. Bieu do histogram

Phan bo ti trong mo

library(ggplot2)
library(gridExtra)
p = ggplot(data = ob, aes(x=pcfat))
p1 = p = p + geom_histogram()
p2 = p + geom_histogram(fill = "blue", col = "white") + labs(x = "Tỉ trọng mỡ (%)", y = "Số người", title = "Phân bố tỉ trọng mỡ")
grid.arrange(p1, p2, ncol = 2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

### Phan bo ti trong mo theo gioi tinh

p = ggplot(data = ob, aes(x = pcfat, fill = gender))
p1 = p + geom_histogram(col="white") + labs(x = "Tỉ trọng mỡ", y = "Số người", title = "Phân bố tỉ trọng mỡ")
p2 = p + geom_density(alpha = 0.5) + labs(x = "Tỉ trọng mỡ", y = "Số người", title = "Phân bố tỉ trọng mỡ")

grid.arrange(p1, p2, ncol = 2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Viec 5 Ve bieu do thanh ### Tao bien so OB tu bien bmi

ob$OB[ob$bmi< 18.5] = "Underweight"
ob$OB[ob$bmi>= 18.5 & ob$bmi< 25] = "Normal"
ob$OB[ob$bmi>= 25 & ob$bmi< 30] = "Overweight"
ob$OB[ob$bmi>= 30] = "Obese"

Phan bo cua tinh trang beo phi

p = ggplot(data = ob, aes(x = OB, fill = OB, col = OB))
p + geom_bar(position = "dodge")

### Phan bo tinh trang beo phi theo gioi tinh

p = ggplot(data = ob, aes(x = OB, y = pcfat, fill = gender, group = gender))
p + geom_bar(stat = "identity", position = "dodge")

Them ti le %

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::combine() masks gridExtra::combine()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
temp = ob %>% group_by(gender) %>% count(OB) %>% mutate(pct = n/sum(n))
temp$pct = round(temp$pct*100, 1)
p = ggplot(data = temp, aes(x = OB, y = pct, fill = gender, group = gender))
p1 = p + geom_bar(stat = "identity", position = "dodge") + geom_text(aes(x = OB, y = pct, label = pct, group = gender), position = position_dodge(width = 1), vjust = -0.5, col = "blue")
p1

p = ggplot(data = temp, aes(x = OB, y = pct, fill = gender, label = pct))
p2 = p + geom_bar(stat = "identity") + geom_text(size = 3, position = position_stack(vjust = 0.5))
p2

grid.arrange(p1, p2, ncol = 2)

### Viec 6 Soan bieu do hop ### So sanh phan bo ty le mo giua cac nhom beo phi o phu nu

women = subset(ob, gender == "F")
dim(women)
## [1] 862  16
p = ggplot(data = women, aes(x = OB, y = pcfat, fill = OB, col = OB))
p1 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05) + labs(x = "Tình trạng béo phì", y = "Tỉ trọng mỡ (%)") + ggtitle("Tỉ trọng mỡ theo tình trạng béo phì ở nữ")
p1

women$OB.n = factor(women$OB, levels = c("Underweight", "Normal", "Overweight", "Obese"))
p = ggplot(data = women, aes(x = OB.n, y = pcfat, fill = OB.n, col = OB.n))
p2 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05) + labs(x = "Tình trạng béo phì", y = "Tỉ trọng mỡ (%)") + ggtitle("Tỉ trọng mỡ theo tình trạng béo phì ở nữ")
p2

grid.arrange(p1, p2, ncol = 2)

### So sanh phan bo ti trong mo giua nam va nu Tao tap du lieu chi gom nam

men = subset(ob, gender == "M")
dim(men)
## [1] 355  16

Ve bieu do hop

p = ggplot(data = men, aes(x = OB, y = pcfat, fill = OB, col = OB))
p1 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05) + labs(x = "Tình trạng béo phì", y = "Tỉ trọng mỡ (%)") + ggtitle("Tỉ trọng mỡ theo tình trạng béo phì ở nam")
p1

Xep theo thu tu can nang

men$OB.n = factor(men$OB, levels = c("Underweight", "Normal", "Overweight", "Obese"))
p = ggplot(data = men, aes(x = OB.n, y = pcfat, fill = OB.n, col = OB.n))
p2 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05) + labs(x = "Tình trạng béo phì", y = "Tỉ trọng mỡ (%)") + ggtitle("Tỉ trọng mỡ theo tình trạng béo phì ở nam")
p2

grid.arrange(p1, p2, ncol = 2)

### Trinh bay trong cung 1 bieu do

ob$OB.n = factor(ob$OB, levels = c("Underweight", "Normal", "Overweight", "Obese"))
p = ggplot(data = ob, aes(x = OB.n, y = pcfat, fill = gender, col = gender))
p1 = p + geom_boxplot(col = "black") + geom_jitter(alpha = 0.05) + labs(x = "Tình trạng béo phì", y = "Tỉ trọng mỡ (%)") + ggtitle("Tỉ trọng mỡ theo tình trạng béo phì và giới tính")
p1

### 7 Viec soan bieu do tuong quan ### 7.1. Moi tuong quan giua chi so khoi co the va ty trong mo

R Markdown

p = ggplot(data = ob, aes(x = bmi, y = pcfat))
p1 = p + geom_point()
p2 = p + geom_point() + geom_smooth()

grid.arrange(p1, p2, ncol = 2)
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

7.2 Moi tuong quan giua chi so khoi co the va ty trong mo theo gioi tinh

p = ggplot(data = ob, aes(x = bmi, y = pcfat, fill = gender, col = gender))
p1 = p + geom_point() + geom_smooth() + labs(x = "Chỉ số khối cơ thể (kg/m2)", y = "Tỉ trọng mỡ (%)") + ggtitle("Liên quan giữa chỉ số khối cơ thể và tỉ trọng mỡ theo giới tính")
p1
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
p = ggplot(data = ob, aes(x = bmi, y = pcfat, fill = gender, col = gender))
p2 = p + geom_point() + geom_smooth(method = "lm", formula = y ~ x + I(x^2)) + labs(x = "Chỉ số khối cơ thể (kg/m2)", y = "Tỉ trọng mỡ (%)") + ggtitle("Liên quan giữa chỉ số khối cơ thể và tỉ trọng mỡ theo giới tính")
p2

grid.arrange(p1, p2, ncol = 2)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.