Race_Label | Mean_Poor_Menthlth_Days | Mean_Any_Bad_Menthlth_Days | Mean_Frequent_Bad_Menthlth_Days |
---|---|---|---|
Latino | 3.829876 | 0.3219597 | 0.1226691 |
White | 3.381298 | 0.3147087 | 0.1042163 |
Race_Label | Mean_Poor_Menthlth_Days | Mean_Any_Bad_Menthlth_Days | Mean_Frequent_Bad_Menthlth_Days |
---|---|---|---|
Latino | 3.694928 | 0.3301296 | 0.1166011 |
White | 3.931572 | 0.3586166 | 0.1221424 |
In this section, I test three sets models with four measures.
Measures:
Rolling average hate speech
Did hate speech get better or worse the month before the response? This is a measure of the average hate speech of three months prior minus the average hate speech of two months prior.
Rolling average standard deviation. How far from the mean is this month?
Percent negative hate speech. What percent is above a score of 1?
Models:
White
Latino
Race interaction
Controls:
age
education
gender
state
month
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 11.914 | 0.099 | 120.162 | 0.000 |
X_age_g | -0.639 | 0.003 | -191.095 | 0.000 |
X_educag | -0.940 | 0.006 | -164.970 | 0.000 |
female | 1.478 | 0.011 | 130.786 | 0.000 |
_STATE 2 |
-1.255 | 0.127 | -9.882 | 0.000 |
_STATE 4 |
-0.476 | 0.060 | -7.983 | 0.000 |
_STATE 5 |
0.135 | 0.070 | 1.932 | 0.053 |
_STATE 6 |
-0.425 | 0.049 | -8.701 | 0.000 |
_STATE 8 |
-0.803 | 0.060 | -13.316 | 0.000 |
_STATE 9 |
-0.841 | 0.067 | -12.503 | 0.000 |
_STATE 10 |
-0.466 | 0.110 | -4.216 | 0.000 |
_STATE 11 |
-1.349 | 0.160 | -8.455 | 0.000 |
_STATE 12 |
-0.369 | 0.050 | -7.361 | 0.000 |
_STATE 13 |
-0.492 | 0.056 | -8.794 | 0.000 |
_STATE 15 |
-1.139 | 0.140 | -8.105 | 0.000 |
_STATE 16 |
-1.009 | 0.082 | -12.363 | 0.000 |
_STATE 17 |
-0.877 | 0.052 | -16.712 | 0.000 |
_STATE 18 |
-0.425 | 0.056 | -7.537 | 0.000 |
_STATE 19 |
-1.342 | 0.066 | -20.452 | 0.000 |
_STATE 20 |
-1.133 | 0.070 | -16.163 | 0.000 |
_STATE 21 |
-0.173 | 0.061 | -2.850 | 0.004 |
_STATE 22 |
-0.339 | 0.066 | -5.154 | 0.000 |
_STATE 23 |
-0.576 | 0.083 | -6.944 | 0.000 |
_STATE 24 |
-0.723 | 0.063 | -11.465 | 0.000 |
_STATE 25 |
-0.424 | 0.057 | -7.471 | 0.000 |
_STATE 26 |
-0.484 | 0.053 | -9.098 | 0.000 |
_STATE 27 |
-1.378 | 0.058 | -23.709 | 0.000 |
_STATE 28 |
-0.145 | 0.075 | -1.924 | 0.054 |
_STATE 29 |
-0.658 | 0.057 | -11.502 | 0.000 |
_STATE 30 |
-1.087 | 0.094 | -11.553 | 0.000 |
_STATE 31 |
-1.337 | 0.079 | -16.949 | 0.000 |
_STATE 32 |
-0.373 | 0.078 | -4.761 | 0.000 |
_STATE 33 |
-0.680 | 0.084 | -8.123 | 0.000 |
_STATE 34 |
-0.540 | 0.059 | -9.130 | 0.000 |
_STATE 35 |
-0.288 | 0.099 | -2.908 | 0.004 |
_STATE 36 |
-0.763 | 0.051 | -15.112 | 0.000 |
_STATE 37 |
-0.637 | 0.054 | -11.765 | 0.000 |
_STATE 38 |
-1.512 | 0.109 | -13.878 | 0.000 |
_STATE 39 |
-0.501 | 0.052 | -9.729 | 0.000 |
_STATE 40 |
-0.269 | 0.066 | -4.058 | 0.000 |
_STATE 41 |
-0.178 | 0.063 | -2.840 | 0.005 |
_STATE 42 |
-0.717 | 0.051 | -14.059 | 0.000 |
_STATE 44 |
-0.533 | 0.099 | -5.393 | 0.000 |
_STATE 45 |
-0.231 | 0.063 | -3.675 | 0.000 |
_STATE 46 |
-1.838 | 0.104 | -17.664 | 0.000 |
_STATE 47 |
-0.172 | 0.057 | -3.016 | 0.003 |
_STATE 48 |
-0.901 | 0.050 | -18.004 | 0.000 |
_STATE 49 |
-0.836 | 0.070 | -11.947 | 0.000 |
_STATE 50 |
-0.721 | 0.112 | -6.449 | 0.000 |
_STATE 51 |
-0.820 | 0.056 | -14.587 | 0.000 |
_STATE 53 |
-0.522 | 0.056 | -9.241 | 0.000 |
_STATE 54 |
0.249 | 0.075 | 3.311 | 0.001 |
_STATE 55 |
-0.955 | 0.057 | -16.668 | 0.000 |
_STATE 56 |
-1.114 | 0.123 | -9.047 | 0.000 |
_STATE 66 |
-1.999 | 0.776 | -2.575 | 0.010 |
IMONTH2 | -0.044 | 0.030 | -1.495 | 0.135 |
IMONTH3 | 0.045 | 0.029 | 1.522 | 0.128 |
IMONTH4 | 0.165 | 0.030 | 5.517 | 0.000 |
IMONTH5 | 0.494 | 0.030 | 16.693 | 0.000 |
IMONTH6 | 0.388 | 0.029 | 13.324 | 0.000 |
IMONTH7 | 0.221 | 0.029 | 7.552 | 0.000 |
IMONTH8 | 0.300 | 0.029 | 10.235 | 0.000 |
IMONTH9 | 0.405 | 0.030 | 13.552 | 0.000 |
IMONTH10 | 0.484 | 0.030 | 16.321 | 0.000 |
IMONTH11 | 0.479 | 0.030 | 16.085 | 0.000 |
IMONTH12 | 0.547 | 0.030 | 18.157 | 0.000 |
rolling_avg_HS90 | 1.259 | 0.033 | 38.149 | 0.000 |
In this model I find that the rolling average of three months is significantly associated to number of bad days mental health for the White population. A one unit increase in average hate speech classifier is associated with a 1.26 day increase in bad mental health. This suggests that worsening hate speech towards the Latinx population is associated with more bad mental health among whites.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 8.738 | 0.053 | 163.483 | 0.000 |
X_age_g | -0.638 | 0.003 | -190.476 | 0.000 |
X_educag | -0.937 | 0.006 | -164.320 | 0.000 |
female | 1.477 | 0.011 | 130.669 | 0.000 |
_STATE 2 |
-1.246 | 0.127 | -9.805 | 0.000 |
_STATE 4 |
-0.469 | 0.060 | -7.868 | 0.000 |
_STATE 5 |
0.122 | 0.070 | 1.747 | 0.081 |
_STATE 6 |
-0.419 | 0.049 | -8.581 | 0.000 |
_STATE 8 |
-0.792 | 0.060 | -13.142 | 0.000 |
_STATE 9 |
-0.827 | 0.067 | -12.301 | 0.000 |
_STATE 10 |
-0.474 | 0.110 | -4.292 | 0.000 |
_STATE 11 |
-1.340 | 0.160 | -8.396 | 0.000 |
_STATE 12 |
-0.357 | 0.050 | -7.129 | 0.000 |
_STATE 13 |
-0.545 | 0.056 | -9.731 | 0.000 |
_STATE 15 |
-1.147 | 0.141 | -8.164 | 0.000 |
_STATE 16 |
-1.021 | 0.082 | -12.508 | 0.000 |
_STATE 17 |
-0.882 | 0.052 | -16.805 | 0.000 |
_STATE 18 |
-0.409 | 0.056 | -7.244 | 0.000 |
_STATE 19 |
-1.339 | 0.066 | -20.404 | 0.000 |
_STATE 20 |
-1.130 | 0.070 | -16.118 | 0.000 |
_STATE 21 |
-0.175 | 0.061 | -2.878 | 0.004 |
_STATE 22 |
-0.330 | 0.066 | -5.015 | 0.000 |
_STATE 23 |
-0.584 | 0.083 | -7.028 | 0.000 |
_STATE 24 |
-0.721 | 0.063 | -11.426 | 0.000 |
_STATE 25 |
-0.424 | 0.057 | -7.463 | 0.000 |
_STATE 26 |
-0.477 | 0.053 | -8.955 | 0.000 |
_STATE 27 |
-1.395 | 0.058 | -23.990 | 0.000 |
_STATE 28 |
-0.159 | 0.075 | -2.101 | 0.036 |
_STATE 29 |
-0.648 | 0.057 | -11.328 | 0.000 |
_STATE 30 |
-1.075 | 0.094 | -11.410 | 0.000 |
_STATE 31 |
-1.342 | 0.079 | -16.997 | 0.000 |
_STATE 32 |
-0.380 | 0.078 | -4.840 | 0.000 |
_STATE 33 |
-0.686 | 0.084 | -8.192 | 0.000 |
_STATE 34 |
-0.581 | 0.059 | -9.820 | 0.000 |
_STATE 35 |
-0.293 | 0.099 | -2.961 | 0.003 |
_STATE 36 |
-0.763 | 0.051 | -15.101 | 0.000 |
_STATE 37 |
-0.633 | 0.054 | -11.684 | 0.000 |
_STATE 38 |
-1.507 | 0.109 | -13.821 | 0.000 |
_STATE 39 |
-0.512 | 0.052 | -9.940 | 0.000 |
_STATE 40 |
-0.269 | 0.066 | -4.053 | 0.000 |
_STATE 41 |
-0.179 | 0.063 | -2.841 | 0.005 |
_STATE 42 |
-0.718 | 0.051 | -14.066 | 0.000 |
_STATE 44 |
-0.525 | 0.099 | -5.305 | 0.000 |
_STATE 45 |
-0.236 | 0.063 | -3.747 | 0.000 |
_STATE 46 |
-1.834 | 0.104 | -17.625 | 0.000 |
_STATE 47 |
-0.161 | 0.057 | -2.815 | 0.005 |
_STATE 48 |
-0.889 | 0.050 | -17.759 | 0.000 |
_STATE 49 |
-0.827 | 0.070 | -11.822 | 0.000 |
_STATE 50 |
-0.719 | 0.112 | -6.426 | 0.000 |
_STATE 51 |
-0.829 | 0.056 | -14.729 | 0.000 |
_STATE 53 |
-0.515 | 0.056 | -9.112 | 0.000 |
_STATE 54 |
0.248 | 0.075 | 3.290 | 0.001 |
_STATE 55 |
-0.957 | 0.057 | -16.684 | 0.000 |
_STATE 56 |
-1.108 | 0.123 | -8.999 | 0.000 |
_STATE 66 |
-1.985 | 0.777 | -2.556 | 0.011 |
IMONTH2 | 0.013 | 0.029 | 0.441 | 0.659 |
IMONTH3 | 0.088 | 0.029 | 3.010 | 0.003 |
IMONTH4 | 0.156 | 0.031 | 4.967 | 0.000 |
IMONTH5 | 0.386 | 0.031 | 12.592 | 0.000 |
IMONTH6 | 0.275 | 0.030 | 9.241 | 0.000 |
IMONTH7 | 0.162 | 0.029 | 5.496 | 0.000 |
IMONTH8 | 0.281 | 0.029 | 9.568 | 0.000 |
IMONTH9 | 0.366 | 0.030 | 12.100 | 0.000 |
IMONTH10 | 0.324 | 0.031 | 10.395 | 0.000 |
IMONTH11 | 0.295 | 0.031 | 9.503 | 0.000 |
IMONTH12 | 0.401 | 0.030 | 13.383 | 0.000 |
difference_HS30 | 0.516 | 0.148 | 3.479 | 0.001 |
If the difference between month 3 and 2 is positive then things are getting worse.This model suggests that worsening hate speech is associated with an increase of .5 days bad mental health for the White population.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 4.564 | 0.107 | 42.647 | 0.000 |
X_age_g | -0.640 | 0.003 | -191.157 | 0.000 |
X_educag | -0.941 | 0.006 | -165.141 | 0.000 |
female | 1.478 | 0.011 | 130.822 | 0.000 |
_STATE 2 |
-1.246 | 0.127 | -9.810 | 0.000 |
_STATE 4 |
-0.481 | 0.060 | -8.073 | 0.000 |
_STATE 5 |
0.110 | 0.070 | 1.579 | 0.114 |
_STATE 6 |
-0.422 | 0.049 | -8.629 | 0.000 |
_STATE 8 |
-0.807 | 0.060 | -13.388 | 0.000 |
_STATE 9 |
-0.830 | 0.067 | -12.346 | 0.000 |
_STATE 10 |
-0.481 | 0.110 | -4.352 | 0.000 |
_STATE 11 |
-1.331 | 0.160 | -8.346 | 0.000 |
_STATE 12 |
-0.360 | 0.050 | -7.181 | 0.000 |
_STATE 13 |
-0.550 | 0.056 | -9.828 | 0.000 |
_STATE 15 |
-1.136 | 0.140 | -8.087 | 0.000 |
_STATE 16 |
-1.037 | 0.082 | -12.702 | 0.000 |
_STATE 17 |
-0.886 | 0.052 | -16.882 | 0.000 |
_STATE 18 |
-0.408 | 0.056 | -7.245 | 0.000 |
_STATE 19 |
-1.338 | 0.066 | -20.397 | 0.000 |
_STATE 20 |
-1.136 | 0.070 | -16.204 | 0.000 |
_STATE 21 |
-0.171 | 0.061 | -2.808 | 0.005 |
_STATE 22 |
-0.332 | 0.066 | -5.056 | 0.000 |
_STATE 23 |
-0.589 | 0.083 | -7.102 | 0.000 |
_STATE 24 |
-0.718 | 0.063 | -11.387 | 0.000 |
_STATE 25 |
-0.423 | 0.057 | -7.441 | 0.000 |
_STATE 26 |
-0.478 | 0.053 | -8.977 | 0.000 |
_STATE 27 |
-1.403 | 0.058 | -24.143 | 0.000 |
_STATE 28 |
-0.153 | 0.075 | -2.030 | 0.042 |
_STATE 29 |
-0.650 | 0.057 | -11.374 | 0.000 |
_STATE 30 |
-1.086 | 0.094 | -11.542 | 0.000 |
_STATE 31 |
-1.346 | 0.079 | -17.055 | 0.000 |
_STATE 32 |
-0.385 | 0.078 | -4.904 | 0.000 |
_STATE 33 |
-0.696 | 0.084 | -8.310 | 0.000 |
_STATE 34 |
-0.529 | 0.059 | -8.956 | 0.000 |
_STATE 35 |
-0.287 | 0.099 | -2.900 | 0.004 |
_STATE 36 |
-0.761 | 0.051 | -15.064 | 0.000 |
_STATE 37 |
-0.638 | 0.054 | -11.779 | 0.000 |
_STATE 38 |
-1.501 | 0.109 | -13.775 | 0.000 |
_STATE 39 |
-0.512 | 0.052 | -9.940 | 0.000 |
_STATE 40 |
-0.276 | 0.066 | -4.164 | 0.000 |
_STATE 41 |
-0.183 | 0.063 | -2.917 | 0.004 |
_STATE 42 |
-0.708 | 0.051 | -13.882 | 0.000 |
_STATE 44 |
-0.524 | 0.099 | -5.300 | 0.000 |
_STATE 45 |
-0.243 | 0.063 | -3.868 | 0.000 |
_STATE 46 |
-1.837 | 0.104 | -17.657 | 0.000 |
_STATE 47 |
-0.159 | 0.057 | -2.780 | 0.005 |
_STATE 48 |
-0.893 | 0.050 | -17.840 | 0.000 |
_STATE 49 |
-0.839 | 0.070 | -11.992 | 0.000 |
_STATE 50 |
-0.722 | 0.112 | -6.463 | 0.000 |
_STATE 51 |
-0.823 | 0.056 | -14.634 | 0.000 |
_STATE 53 |
-0.518 | 0.056 | -9.176 | 0.000 |
_STATE 54 |
0.250 | 0.075 | 3.323 | 0.001 |
_STATE 55 |
-0.960 | 0.057 | -16.745 | 0.000 |
_STATE 56 |
-1.103 | 0.123 | -8.963 | 0.000 |
_STATE 66 |
-2.007 | 0.776 | -2.585 | 0.010 |
IMONTH2 | 0.040 | 0.029 | 1.347 | 0.178 |
IMONTH3 | 0.122 | 0.029 | 4.172 | 0.000 |
IMONTH4 | 0.179 | 0.030 | 5.995 | 0.000 |
IMONTH5 | 0.377 | 0.030 | 12.765 | 0.000 |
IMONTH6 | 0.271 | 0.029 | 9.317 | 0.000 |
IMONTH7 | 0.156 | 0.029 | 5.336 | 0.000 |
IMONTH8 | 0.274 | 0.029 | 9.355 | 0.000 |
IMONTH9 | 0.332 | 0.030 | 11.123 | 0.000 |
IMONTH10 | 0.200 | 0.030 | 6.748 | 0.000 |
IMONTH11 | 0.144 | 0.030 | 4.852 | 0.000 |
IMONTH12 | 0.211 | 0.030 | 6.993 | 0.000 |
rolling_sd_HS90 | 3.107 | 0.069 | 44.805 | 0.000 |
This model suggests that an increase in one standard deviation of hate speech is associated with 3 days increased bad mental health for whites.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 8.700 | 0.060 | 145.956 | 0.000 |
X_age_g | -0.638 | 0.003 | -190.497 | 0.000 |
X_educag | -0.937 | 0.006 | -164.324 | 0.000 |
female | 1.477 | 0.011 | 130.673 | 0.000 |
_STATE 2 |
-1.246 | 0.127 | -9.804 | 0.000 |
_STATE 4 |
-0.471 | 0.060 | -7.891 | 0.000 |
_STATE 5 |
0.123 | 0.070 | 1.763 | 0.078 |
_STATE 6 |
-0.420 | 0.049 | -8.590 | 0.000 |
_STATE 8 |
-0.793 | 0.060 | -13.148 | 0.000 |
_STATE 9 |
-0.829 | 0.067 | -12.323 | 0.000 |
_STATE 10 |
-0.474 | 0.110 | -4.290 | 0.000 |
_STATE 11 |
-1.342 | 0.160 | -8.409 | 0.000 |
_STATE 12 |
-0.357 | 0.050 | -7.127 | 0.000 |
_STATE 13 |
-0.540 | 0.056 | -9.642 | 0.000 |
_STATE 15 |
-1.147 | 0.141 | -8.159 | 0.000 |
_STATE 16 |
-1.021 | 0.082 | -12.500 | 0.000 |
_STATE 17 |
-0.882 | 0.052 | -16.804 | 0.000 |
_STATE 18 |
-0.410 | 0.056 | -7.267 | 0.000 |
_STATE 19 |
-1.338 | 0.066 | -20.394 | 0.000 |
_STATE 20 |
-1.131 | 0.070 | -16.133 | 0.000 |
_STATE 21 |
-0.175 | 0.061 | -2.880 | 0.004 |
_STATE 22 |
-0.330 | 0.066 | -5.020 | 0.000 |
_STATE 23 |
-0.582 | 0.083 | -7.007 | 0.000 |
_STATE 24 |
-0.719 | 0.063 | -11.405 | 0.000 |
_STATE 25 |
-0.424 | 0.057 | -7.467 | 0.000 |
_STATE 26 |
-0.477 | 0.053 | -8.959 | 0.000 |
_STATE 27 |
-1.393 | 0.058 | -23.964 | 0.000 |
_STATE 28 |
-0.157 | 0.075 | -2.079 | 0.038 |
_STATE 29 |
-0.650 | 0.057 | -11.352 | 0.000 |
_STATE 30 |
-1.076 | 0.094 | -11.430 | 0.000 |
_STATE 31 |
-1.341 | 0.079 | -16.994 | 0.000 |
_STATE 32 |
-0.378 | 0.078 | -4.823 | 0.000 |
_STATE 33 |
-0.685 | 0.084 | -8.176 | 0.000 |
_STATE 34 |
-0.586 | 0.059 | -9.917 | 0.000 |
_STATE 35 |
-0.293 | 0.099 | -2.958 | 0.003 |
_STATE 36 |
-0.762 | 0.051 | -15.082 | 0.000 |
_STATE 37 |
-0.633 | 0.054 | -11.684 | 0.000 |
_STATE 38 |
-1.506 | 0.109 | -13.814 | 0.000 |
_STATE 39 |
-0.511 | 0.052 | -9.915 | 0.000 |
_STATE 40 |
-0.269 | 0.066 | -4.058 | 0.000 |
_STATE 41 |
-0.179 | 0.063 | -2.853 | 0.004 |
_STATE 42 |
-0.717 | 0.051 | -14.043 | 0.000 |
_STATE 44 |
-0.524 | 0.099 | -5.295 | 0.000 |
_STATE 45 |
-0.236 | 0.063 | -3.751 | 0.000 |
_STATE 46 |
-1.835 | 0.104 | -17.632 | 0.000 |
_STATE 47 |
-0.160 | 0.057 | -2.795 | 0.005 |
_STATE 48 |
-0.890 | 0.050 | -17.764 | 0.000 |
_STATE 49 |
-0.828 | 0.070 | -11.836 | 0.000 |
_STATE 50 |
-0.718 | 0.112 | -6.421 | 0.000 |
_STATE 51 |
-0.827 | 0.056 | -14.694 | 0.000 |
_STATE 53 |
-0.514 | 0.056 | -9.108 | 0.000 |
_STATE 54 |
0.248 | 0.075 | 3.294 | 0.001 |
_STATE 55 |
-0.957 | 0.057 | -16.698 | 0.000 |
_STATE 56 |
-1.108 | 0.123 | -8.995 | 0.000 |
_STATE 66 |
-1.985 | 0.777 | -2.556 | 0.011 |
IMONTH2 | 0.014 | 0.030 | 0.490 | 0.624 |
IMONTH3 | 0.093 | 0.030 | 3.153 | 0.002 |
IMONTH4 | 0.193 | 0.030 | 6.344 | 0.000 |
IMONTH5 | 0.420 | 0.030 | 13.923 | 0.000 |
IMONTH6 | 0.302 | 0.030 | 10.187 | 0.000 |
IMONTH7 | 0.179 | 0.030 | 5.975 | 0.000 |
IMONTH8 | 0.284 | 0.030 | 9.427 | 0.000 |
IMONTH9 | 0.390 | 0.031 | 12.702 | 0.000 |
IMONTH10 | 0.366 | 0.030 | 12.115 | 0.000 |
IMONTH11 | 0.332 | 0.030 | 11.104 | 0.000 |
IMONTH12 | 0.407 | 0.030 | 13.599 | 0.000 |
percent_negative_HS90 | 0.028 | 0.031 | 0.898 | 0.369 |
No significant association for whites.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 5.338 | 0.430 | 12.413 | 0.000 |
X_age_g | -0.163 | 0.012 | -13.605 | 0.000 |
X_educag | -0.052 | 0.016 | -3.314 | 0.001 |
female | 0.882 | 0.036 | 24.202 | 0.000 |
_STATE 2 |
0.244 | 0.680 | 0.359 | 0.720 |
_STATE 4 |
-0.075 | 0.337 | -0.223 | 0.823 |
_STATE 5 |
-0.238 | 0.448 | -0.530 | 0.596 |
_STATE 6 |
-0.587 | 0.325 | -1.806 | 0.071 |
_STATE 8 |
-0.447 | 0.348 | -1.285 | 0.199 |
_STATE 9 |
0.146 | 0.370 | 0.395 | 0.693 |
_STATE 10 |
-0.617 | 0.571 | -1.082 | 0.279 |
_STATE 11 |
-1.238 | 0.592 | -2.090 | 0.037 |
_STATE 12 |
-0.115 | 0.329 | -0.349 | 0.727 |
_STATE 13 |
-0.436 | 0.353 | -1.234 | 0.217 |
_STATE 15 |
0.402 | 0.479 | 0.840 | 0.401 |
_STATE 16 |
-0.312 | 0.453 | -0.688 | 0.491 |
_STATE 17 |
-0.584 | 0.337 | -1.733 | 0.083 |
_STATE 18 |
-0.732 | 0.387 | -1.891 | 0.059 |
_STATE 19 |
-0.958 | 0.467 | -2.052 | 0.040 |
_STATE 20 |
-0.524 | 0.409 | -1.281 | 0.200 |
_STATE 21 |
0.349 | 0.492 | 0.709 | 0.479 |
_STATE 22 |
1.161 | 0.431 | 2.693 | 0.007 |
_STATE 23 |
0.289 | 1.019 | 0.283 | 0.777 |
_STATE 24 |
-0.829 | 0.368 | -2.250 | 0.024 |
_STATE 25 |
0.169 | 0.358 | 0.472 | 0.637 |
_STATE 26 |
1.431 | 0.383 | 3.740 | 0.000 |
_STATE 27 |
-0.641 | 0.420 | -1.528 | 0.126 |
_STATE 28 |
-0.043 | 0.639 | -0.067 | 0.947 |
_STATE 29 |
0.850 | 0.430 | 1.976 | 0.048 |
_STATE 30 |
0.504 | 0.782 | 0.645 | 0.519 |
_STATE 31 |
-1.053 | 0.459 | -2.295 | 0.022 |
_STATE 32 |
-0.846 | 0.357 | -2.370 | 0.018 |
_STATE 33 |
1.276 | 0.768 | 1.660 | 0.097 |
_STATE 34 |
-0.394 | 0.341 | -1.155 | 0.248 |
_STATE 35 |
0.295 | 0.350 | 0.841 | 0.400 |
_STATE 36 |
0.004 | 0.331 | 0.011 | 0.991 |
_STATE 37 |
-1.069 | 0.355 | -3.014 | 0.003 |
_STATE 38 |
1.733 | 0.957 | 1.810 | 0.070 |
_STATE 39 |
2.231 | 0.393 | 5.676 | 0.000 |
_STATE 40 |
-0.318 | 0.395 | -0.805 | 0.421 |
_STATE 41 |
0.398 | 0.379 | 1.049 | 0.294 |
_STATE 42 |
1.564 | 0.355 | 4.407 | 0.000 |
_STATE 44 |
0.284 | 0.475 | 0.598 | 0.550 |
_STATE 45 |
-0.361 | 0.421 | -0.856 | 0.392 |
_STATE 46 |
-0.168 | 0.904 | -0.186 | 0.852 |
_STATE 47 |
0.282 | 0.415 | 0.680 | 0.496 |
_STATE 48 |
-0.624 | 0.326 | -1.915 | 0.055 |
_STATE 49 |
-0.708 | 0.392 | -1.806 | 0.071 |
_STATE 50 |
2.391 | 1.338 | 1.786 | 0.074 |
_STATE 51 |
-1.031 | 0.358 | -2.878 | 0.004 |
_STATE 53 |
-0.254 | 0.356 | -0.714 | 0.475 |
_STATE 54 |
3.089 | 0.906 | 3.410 | 0.001 |
_STATE 55 |
0.581 | 0.398 | 1.461 | 0.144 |
_STATE 56 |
0.312 | 0.656 | 0.475 | 0.634 |
_STATE 66 |
0.348 | 1.326 | 0.263 | 0.793 |
IMONTH2 | 0.309 | 0.100 | 3.078 | 0.002 |
IMONTH3 | 0.199 | 0.097 | 2.050 | 0.040 |
IMONTH4 | 0.225 | 0.099 | 2.260 | 0.024 |
IMONTH5 | 0.163 | 0.098 | 1.657 | 0.097 |
IMONTH6 | 0.177 | 0.094 | 1.892 | 0.058 |
IMONTH7 | 0.118 | 0.097 | 1.220 | 0.222 |
IMONTH8 | 0.238 | 0.097 | 2.456 | 0.014 |
IMONTH9 | 0.484 | 0.095 | 5.099 | 0.000 |
IMONTH10 | 0.355 | 0.094 | 3.755 | 0.000 |
IMONTH11 | 0.311 | 0.096 | 3.225 | 0.001 |
IMONTH12 | 0.399 | 0.097 | 4.095 | 0.000 |
rolling_avg_HS90 | 0.547 | 0.106 | 5.171 | 0.000 |
A one unit increase is significantly associated with a .55 day increase in poor mental health days for the Latino population.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 3.959 | 0.336 | 11.798 | 0.000 |
X_age_g | -0.162 | 0.012 | -13.512 | 0.000 |
X_educag | -0.050 | 0.016 | -3.191 | 0.001 |
female | 0.882 | 0.036 | 24.213 | 0.000 |
_STATE 2 |
0.258 | 0.680 | 0.379 | 0.704 |
_STATE 4 |
-0.061 | 0.337 | -0.182 | 0.855 |
_STATE 5 |
-0.230 | 0.448 | -0.513 | 0.608 |
_STATE 6 |
-0.572 | 0.325 | -1.758 | 0.079 |
_STATE 8 |
-0.432 | 0.348 | -1.244 | 0.214 |
_STATE 9 |
0.163 | 0.370 | 0.440 | 0.660 |
_STATE 10 |
-0.605 | 0.571 | -1.060 | 0.289 |
_STATE 11 |
-1.223 | 0.592 | -2.065 | 0.039 |
_STATE 12 |
-0.101 | 0.329 | -0.308 | 0.758 |
_STATE 13 |
-0.450 | 0.353 | -1.274 | 0.203 |
_STATE 15 |
0.403 | 0.479 | 0.842 | 0.400 |
_STATE 16 |
-0.309 | 0.453 | -0.682 | 0.495 |
_STATE 17 |
-0.575 | 0.337 | -1.708 | 0.088 |
_STATE 18 |
-0.716 | 0.387 | -1.850 | 0.064 |
_STATE 19 |
-0.951 | 0.467 | -2.037 | 0.042 |
_STATE 20 |
-0.516 | 0.409 | -1.262 | 0.207 |
_STATE 21 |
0.352 | 0.492 | 0.715 | 0.475 |
_STATE 22 |
1.177 | 0.431 | 2.730 | 0.006 |
_STATE 23 |
0.294 | 1.019 | 0.288 | 0.773 |
_STATE 24 |
-0.819 | 0.368 | -2.223 | 0.026 |
_STATE 25 |
0.176 | 0.358 | 0.493 | 0.622 |
_STATE 26 |
1.442 | 0.383 | 3.767 | 0.000 |
_STATE 27 |
-0.641 | 0.420 | -1.527 | 0.127 |
_STATE 28 |
-0.046 | 0.639 | -0.072 | 0.943 |
_STATE 29 |
0.858 | 0.430 | 1.995 | 0.046 |
_STATE 30 |
0.520 | 0.782 | 0.665 | 0.506 |
_STATE 31 |
-1.046 | 0.459 | -2.278 | 0.023 |
_STATE 32 |
-0.840 | 0.357 | -2.354 | 0.019 |
_STATE 33 |
1.291 | 0.768 | 1.680 | 0.093 |
_STATE 34 |
-0.400 | 0.341 | -1.170 | 0.242 |
_STATE 35 |
0.300 | 0.350 | 0.855 | 0.392 |
_STATE 36 |
0.008 | 0.331 | 0.024 | 0.981 |
_STATE 37 |
-1.060 | 0.355 | -2.990 | 0.003 |
_STATE 38 |
1.758 | 0.957 | 1.836 | 0.066 |
_STATE 39 |
2.235 | 0.393 | 5.685 | 0.000 |
_STATE 40 |
-0.311 | 0.395 | -0.789 | 0.430 |
_STATE 41 |
0.408 | 0.379 | 1.075 | 0.282 |
_STATE 42 |
1.573 | 0.355 | 4.432 | 0.000 |
_STATE 44 |
0.300 | 0.475 | 0.630 | 0.528 |
_STATE 45 |
-0.359 | 0.421 | -0.852 | 0.394 |
_STATE 46 |
-0.144 | 0.904 | -0.159 | 0.873 |
_STATE 47 |
0.297 | 0.415 | 0.717 | 0.474 |
_STATE 48 |
-0.611 | 0.326 | -1.875 | 0.061 |
_STATE 49 |
-0.699 | 0.392 | -1.782 | 0.075 |
_STATE 50 |
2.411 | 1.339 | 1.801 | 0.072 |
_STATE 51 |
-1.027 | 0.358 | -2.866 | 0.004 |
_STATE 53 |
-0.243 | 0.356 | -0.684 | 0.494 |
_STATE 54 |
3.097 | 0.906 | 3.419 | 0.001 |
_STATE 55 |
0.587 | 0.398 | 1.475 | 0.140 |
_STATE 56 |
0.325 | 0.656 | 0.496 | 0.620 |
_STATE 66 |
0.347 | 1.326 | 0.261 | 0.794 |
IMONTH2 | 0.343 | 0.100 | 3.432 | 0.001 |
IMONTH3 | 0.224 | 0.097 | 2.307 | 0.021 |
IMONTH4 | 0.212 | 0.106 | 2.008 | 0.045 |
IMONTH5 | 0.105 | 0.103 | 1.024 | 0.306 |
IMONTH6 | 0.116 | 0.096 | 1.204 | 0.229 |
IMONTH7 | 0.084 | 0.097 | 0.860 | 0.390 |
IMONTH8 | 0.233 | 0.097 | 2.403 | 0.016 |
IMONTH9 | 0.455 | 0.097 | 4.693 | 0.000 |
IMONTH10 | 0.261 | 0.101 | 2.598 | 0.009 |
IMONTH11 | 0.207 | 0.101 | 2.048 | 0.041 |
IMONTH12 | 0.319 | 0.097 | 3.293 | 0.001 |
difference_HS30 | 0.459 | 0.488 | 0.941 | 0.346 |
No significant association
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 1.932 | 0.451 | 4.284 | 0.000 |
X_age_g | -0.163 | 0.012 | -13.611 | 0.000 |
X_educag | -0.052 | 0.016 | -3.273 | 0.001 |
female | 0.883 | 0.036 | 24.244 | 0.000 |
_STATE 2 |
0.262 | 0.680 | 0.385 | 0.700 |
_STATE 4 |
-0.074 | 0.337 | -0.220 | 0.826 |
_STATE 5 |
-0.248 | 0.448 | -0.554 | 0.580 |
_STATE 6 |
-0.582 | 0.325 | -1.790 | 0.073 |
_STATE 8 |
-0.444 | 0.348 | -1.277 | 0.202 |
_STATE 9 |
0.153 | 0.370 | 0.414 | 0.679 |
_STATE 10 |
-0.615 | 0.571 | -1.078 | 0.281 |
_STATE 11 |
-1.225 | 0.592 | -2.069 | 0.039 |
_STATE 12 |
-0.106 | 0.329 | -0.322 | 0.748 |
_STATE 13 |
-0.460 | 0.353 | -1.303 | 0.193 |
_STATE 15 |
0.404 | 0.479 | 0.843 | 0.399 |
_STATE 16 |
-0.326 | 0.453 | -0.720 | 0.471 |
_STATE 17 |
-0.585 | 0.337 | -1.736 | 0.083 |
_STATE 18 |
-0.723 | 0.387 | -1.870 | 0.061 |
_STATE 19 |
-0.956 | 0.467 | -2.050 | 0.040 |
_STATE 20 |
-0.523 | 0.409 | -1.281 | 0.200 |
_STATE 21 |
0.348 | 0.492 | 0.708 | 0.479 |
_STATE 22 |
1.163 | 0.431 | 2.697 | 0.007 |
_STATE 23 |
0.285 | 1.019 | 0.279 | 0.780 |
_STATE 24 |
-0.827 | 0.368 | -2.245 | 0.025 |
_STATE 25 |
0.169 | 0.358 | 0.473 | 0.637 |
_STATE 26 |
1.434 | 0.383 | 3.747 | 0.000 |
_STATE 27 |
-0.650 | 0.420 | -1.549 | 0.121 |
_STATE 28 |
-0.027 | 0.639 | -0.042 | 0.966 |
_STATE 29 |
0.846 | 0.430 | 1.968 | 0.049 |
_STATE 30 |
0.511 | 0.782 | 0.654 | 0.513 |
_STATE 31 |
-1.053 | 0.459 | -2.295 | 0.022 |
_STATE 32 |
-0.853 | 0.357 | -2.389 | 0.017 |
_STATE 33 |
1.281 | 0.768 | 1.667 | 0.096 |
_STATE 34 |
-0.379 | 0.341 | -1.110 | 0.267 |
_STATE 35 |
0.296 | 0.350 | 0.845 | 0.398 |
_STATE 36 |
0.005 | 0.331 | 0.015 | 0.988 |
_STATE 37 |
-1.070 | 0.355 | -3.016 | 0.003 |
_STATE 38 |
1.740 | 0.957 | 1.818 | 0.069 |
_STATE 39 |
2.227 | 0.393 | 5.665 | 0.000 |
_STATE 40 |
-0.323 | 0.395 | -0.818 | 0.413 |
_STATE 41 |
0.396 | 0.379 | 1.044 | 0.297 |
_STATE 42 |
1.572 | 0.355 | 4.430 | 0.000 |
_STATE 44 |
0.291 | 0.475 | 0.612 | 0.540 |
_STATE 45 |
-0.368 | 0.421 | -0.873 | 0.383 |
_STATE 46 |
-0.160 | 0.904 | -0.177 | 0.860 |
_STATE 47 |
0.289 | 0.415 | 0.698 | 0.485 |
_STATE 48 |
-0.617 | 0.326 | -1.895 | 0.058 |
_STATE 49 |
-0.706 | 0.392 | -1.801 | 0.072 |
_STATE 50 |
2.381 | 1.338 | 1.779 | 0.075 |
_STATE 51 |
-1.034 | 0.358 | -2.885 | 0.004 |
_STATE 53 |
-0.250 | 0.356 | -0.703 | 0.482 |
_STATE 54 |
3.094 | 0.906 | 3.416 | 0.001 |
_STATE 55 |
0.579 | 0.398 | 1.455 | 0.146 |
_STATE 56 |
0.322 | 0.656 | 0.491 | 0.624 |
_STATE 66 |
0.359 | 1.326 | 0.271 | 0.787 |
IMONTH2 | 0.363 | 0.100 | 3.626 | 0.000 |
IMONTH3 | 0.242 | 0.097 | 2.496 | 0.013 |
IMONTH4 | 0.228 | 0.099 | 2.300 | 0.021 |
IMONTH5 | 0.105 | 0.098 | 1.068 | 0.286 |
IMONTH6 | 0.126 | 0.093 | 1.350 | 0.177 |
IMONTH7 | 0.090 | 0.096 | 0.936 | 0.349 |
IMONTH8 | 0.232 | 0.097 | 2.397 | 0.017 |
IMONTH9 | 0.446 | 0.095 | 4.701 | 0.000 |
IMONTH10 | 0.226 | 0.094 | 2.400 | 0.016 |
IMONTH11 | 0.177 | 0.096 | 1.844 | 0.065 |
IMONTH12 | 0.271 | 0.097 | 2.795 | 0.005 |
rolling_sd_HS90 | 1.499 | 0.224 | 6.676 | 0.000 |
A one standard deviation increase in hate speech is associated with a 1.5 day increase in bad mental health days for the Latinx population.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 3.828 | 0.347 | 11.047 | 0.000 |
X_age_g | -0.162 | 0.012 | -13.509 | 0.000 |
X_educag | -0.051 | 0.016 | -3.200 | 0.001 |
female | 0.882 | 0.036 | 24.220 | 0.000 |
_STATE 2 |
0.259 | 0.680 | 0.381 | 0.703 |
_STATE 4 |
-0.065 | 0.337 | -0.192 | 0.848 |
_STATE 5 |
-0.233 | 0.448 | -0.521 | 0.602 |
_STATE 6 |
-0.575 | 0.325 | -1.769 | 0.077 |
_STATE 8 |
-0.434 | 0.348 | -1.248 | 0.212 |
_STATE 9 |
0.160 | 0.370 | 0.433 | 0.665 |
_STATE 10 |
-0.607 | 0.571 | -1.064 | 0.287 |
_STATE 11 |
-1.221 | 0.592 | -2.061 | 0.039 |
_STATE 12 |
-0.102 | 0.329 | -0.311 | 0.756 |
_STATE 13 |
-0.445 | 0.353 | -1.261 | 0.207 |
_STATE 15 |
0.404 | 0.479 | 0.843 | 0.399 |
_STATE 16 |
-0.312 | 0.453 | -0.688 | 0.491 |
_STATE 17 |
-0.575 | 0.337 | -1.708 | 0.088 |
_STATE 18 |
-0.717 | 0.387 | -1.854 | 0.064 |
_STATE 19 |
-0.951 | 0.467 | -2.037 | 0.042 |
_STATE 20 |
-0.518 | 0.409 | -1.267 | 0.205 |
_STATE 21 |
0.353 | 0.492 | 0.718 | 0.473 |
_STATE 22 |
1.177 | 0.431 | 2.731 | 0.006 |
_STATE 23 |
0.295 | 1.019 | 0.289 | 0.772 |
_STATE 24 |
-0.819 | 0.368 | -2.222 | 0.026 |
_STATE 25 |
0.178 | 0.358 | 0.498 | 0.619 |
_STATE 26 |
1.441 | 0.383 | 3.766 | 0.000 |
_STATE 27 |
-0.639 | 0.420 | -1.523 | 0.128 |
_STATE 28 |
-0.041 | 0.639 | -0.065 | 0.949 |
_STATE 29 |
0.855 | 0.430 | 1.988 | 0.047 |
_STATE 30 |
0.517 | 0.782 | 0.661 | 0.509 |
_STATE 31 |
-1.045 | 0.459 | -2.277 | 0.023 |
_STATE 32 |
-0.839 | 0.357 | -2.351 | 0.019 |
_STATE 33 |
1.288 | 0.768 | 1.676 | 0.094 |
_STATE 34 |
-0.401 | 0.341 | -1.174 | 0.240 |
_STATE 35 |
0.299 | 0.350 | 0.854 | 0.393 |
_STATE 36 |
0.009 | 0.331 | 0.028 | 0.977 |
_STATE 37 |
-1.061 | 0.355 | -2.991 | 0.003 |
_STATE 38 |
1.757 | 0.957 | 1.835 | 0.066 |
_STATE 39 |
2.237 | 0.393 | 5.691 | 0.000 |
_STATE 40 |
-0.311 | 0.395 | -0.787 | 0.431 |
_STATE 41 |
0.405 | 0.379 | 1.069 | 0.285 |
_STATE 42 |
1.575 | 0.355 | 4.439 | 0.000 |
_STATE 44 |
0.300 | 0.475 | 0.631 | 0.528 |
_STATE 45 |
-0.359 | 0.421 | -0.852 | 0.394 |
_STATE 46 |
-0.149 | 0.904 | -0.165 | 0.869 |
_STATE 47 |
0.301 | 0.415 | 0.726 | 0.468 |
_STATE 48 |
-0.612 | 0.326 | -1.879 | 0.060 |
_STATE 49 |
-0.701 | 0.392 | -1.789 | 0.074 |
_STATE 50 |
2.411 | 1.339 | 1.801 | 0.072 |
_STATE 51 |
-1.025 | 0.358 | -2.861 | 0.004 |
_STATE 53 |
-0.243 | 0.356 | -0.684 | 0.494 |
_STATE 54 |
3.099 | 0.906 | 3.421 | 0.001 |
_STATE 55 |
0.586 | 0.398 | 1.474 | 0.141 |
_STATE 56 |
0.325 | 0.656 | 0.495 | 0.621 |
_STATE 66 |
0.347 | 1.326 | 0.261 | 0.794 |
IMONTH2 | 0.358 | 0.101 | 3.558 | 0.000 |
IMONTH3 | 0.251 | 0.099 | 2.547 | 0.011 |
IMONTH4 | 0.272 | 0.101 | 2.692 | 0.007 |
IMONTH5 | 0.165 | 0.101 | 1.637 | 0.102 |
IMONTH6 | 0.171 | 0.097 | 1.768 | 0.077 |
IMONTH7 | 0.130 | 0.100 | 1.304 | 0.192 |
IMONTH8 | 0.266 | 0.100 | 2.653 | 0.008 |
IMONTH9 | 0.510 | 0.099 | 5.172 | 0.000 |
IMONTH10 | 0.331 | 0.097 | 3.398 | 0.001 |
IMONTH11 | 0.264 | 0.098 | 2.707 | 0.007 |
IMONTH12 | 0.341 | 0.097 | 3.514 | 0.000 |
percent_negative_HS90 | 0.128 | 0.096 | 1.336 | 0.181 |
No significant assocation
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 10.865 | 0.104 | 104.519 | 0.000 |
X_age_g | -0.564 | 0.003 | -173.350 | 0.000 |
X_educag | -0.713 | 0.005 | -136.288 | 0.000 |
female | 1.349 | 0.011 | 124.979 | 0.000 |
_STATE 2 |
-1.149 | 0.130 | -8.858 | 0.000 |
_STATE 4 |
-0.494 | 0.058 | -8.466 | 0.000 |
_STATE 5 |
0.094 | 0.072 | 1.306 | 0.192 |
_STATE 6 |
-0.746 | 0.049 | -15.119 | 0.000 |
_STATE 8 |
-0.865 | 0.060 | -14.312 | 0.000 |
_STATE 9 |
-0.794 | 0.068 | -11.752 | 0.000 |
_STATE 10 |
-0.579 | 0.112 | -5.169 | 0.000 |
_STATE 11 |
-1.478 | 0.154 | -9.616 | 0.000 |
_STATE 12 |
-0.330 | 0.051 | -6.471 | 0.000 |
_STATE 13 |
-0.573 | 0.057 | -9.978 | 0.000 |
_STATE 15 |
-0.806 | 0.130 | -6.191 | 0.000 |
_STATE 16 |
-0.998 | 0.083 | -11.990 | 0.000 |
_STATE 17 |
-0.945 | 0.054 | -17.613 | 0.000 |
_STATE 18 |
-0.461 | 0.059 | -7.869 | 0.000 |
_STATE 19 |
-1.362 | 0.068 | -19.917 | 0.000 |
_STATE 20 |
-1.138 | 0.072 | -15.878 | 0.000 |
_STATE 21 |
-0.123 | 0.064 | -1.936 | 0.053 |
_STATE 22 |
-0.211 | 0.068 | -3.094 | 0.002 |
_STATE 23 |
-0.580 | 0.088 | -6.621 | 0.000 |
_STATE 24 |
-0.837 | 0.064 | -13.050 | 0.000 |
_STATE 25 |
-0.449 | 0.058 | -7.699 | 0.000 |
_STATE 26 |
-0.409 | 0.056 | -7.368 | 0.000 |
_STATE 27 |
-1.410 | 0.061 | -23.260 | 0.000 |
_STATE 28 |
-0.134 | 0.079 | -1.697 | 0.090 |
_STATE 29 |
-0.596 | 0.060 | -9.970 | 0.000 |
_STATE 30 |
-1.057 | 0.099 | -10.704 | 0.000 |
_STATE 31 |
-1.399 | 0.081 | -17.294 | 0.000 |
_STATE 32 |
-0.707 | 0.073 | -9.622 | 0.000 |
_STATE 33 |
-0.666 | 0.088 | -7.558 | 0.000 |
_STATE 34 |
-0.618 | 0.059 | -10.496 | 0.000 |
_STATE 35 |
-0.088 | 0.080 | -1.097 | 0.273 |
_STATE 36 |
-0.691 | 0.052 | -13.392 | 0.000 |
_STATE 37 |
-0.782 | 0.056 | -13.989 | 0.000 |
_STATE 38 |
-1.440 | 0.115 | -12.577 | 0.000 |
_STATE 39 |
-0.400 | 0.054 | -7.435 | 0.000 |
_STATE 40 |
-0.337 | 0.068 | -4.957 | 0.000 |
_STATE 41 |
-0.194 | 0.064 | -3.016 | 0.003 |
_STATE 42 |
-0.574 | 0.053 | -10.814 | 0.000 |
_STATE 44 |
-0.507 | 0.099 | -5.122 | 0.000 |
_STATE 45 |
-0.284 | 0.065 | -4.350 | 0.000 |
_STATE 46 |
-1.804 | 0.109 | -16.507 | 0.000 |
_STATE 47 |
-0.149 | 0.060 | -2.496 | 0.013 |
_STATE 48 |
-0.969 | 0.050 | -19.302 | 0.000 |
_STATE 49 |
-0.891 | 0.071 | -12.554 | 0.000 |
_STATE 50 |
-0.699 | 0.118 | -5.912 | 0.000 |
_STATE 51 |
-0.922 | 0.058 | -15.926 | 0.000 |
_STATE 53 |
-0.595 | 0.058 | -10.259 | 0.000 |
_STATE 54 |
0.344 | 0.079 | 4.325 | 0.000 |
_STATE 55 |
-0.907 | 0.060 | -15.210 | 0.000 |
_STATE 56 |
-1.020 | 0.126 | -8.124 | 0.000 |
_STATE 66 |
-0.839 | 0.595 | -1.410 | 0.159 |
IMONTH2 | 0.019 | 0.028 | 0.661 | 0.509 |
IMONTH3 | 0.069 | 0.028 | 2.451 | 0.014 |
IMONTH4 | 0.178 | 0.029 | 6.196 | 0.000 |
IMONTH5 | 0.427 | 0.028 | 15.016 | 0.000 |
IMONTH6 | 0.337 | 0.028 | 12.101 | 0.000 |
IMONTH7 | 0.199 | 0.028 | 7.094 | 0.000 |
IMONTH8 | 0.278 | 0.028 | 9.885 | 0.000 |
IMONTH9 | 0.418 | 0.028 | 14.725 | 0.000 |
IMONTH10 | 0.457 | 0.028 | 16.174 | 0.000 |
IMONTH11 | 0.439 | 0.028 | 15.435 | 0.000 |
IMONTH12 | 0.512 | 0.029 | 17.788 | 0.000 |
X_race8 | -1.857 | 0.188 | -9.871 | 0.000 |
rolling_avg_HS90 | 1.178 | 0.035 | 33.706 | 0.000 |
X_race8:rolling_avg_HS90 | -0.271 | 0.073 | -3.693 | 0.000 |
A one unit increase in hate speech is associated with 1.18 increased days bad mental health for Whites and a .91 increase for latinos.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 7.891 | 0.054 | 145.036 | 0.000 |
X_age_g | -0.563 | 0.003 | -172.775 | 0.000 |
X_educag | -0.710 | 0.005 | -135.658 | 0.000 |
female | 1.348 | 0.011 | 124.894 | 0.000 |
_STATE 2 |
-1.140 | 0.130 | -8.787 | 0.000 |
_STATE 4 |
-0.487 | 0.058 | -8.358 | 0.000 |
_STATE 5 |
0.083 | 0.072 | 1.143 | 0.253 |
_STATE 6 |
-0.738 | 0.049 | -14.955 | 0.000 |
_STATE 8 |
-0.855 | 0.060 | -14.149 | 0.000 |
_STATE 9 |
-0.781 | 0.068 | -11.555 | 0.000 |
_STATE 10 |
-0.586 | 0.112 | -5.226 | 0.000 |
_STATE 11 |
-1.469 | 0.154 | -9.558 | 0.000 |
_STATE 12 |
-0.319 | 0.051 | -6.262 | 0.000 |
_STATE 13 |
-0.622 | 0.057 | -10.816 | 0.000 |
_STATE 15 |
-0.815 | 0.130 | -6.260 | 0.000 |
_STATE 16 |
-1.009 | 0.083 | -12.125 | 0.000 |
_STATE 17 |
-0.948 | 0.054 | -17.669 | 0.000 |
_STATE 18 |
-0.445 | 0.059 | -7.600 | 0.000 |
_STATE 19 |
-1.359 | 0.068 | -19.876 | 0.000 |
_STATE 20 |
-1.135 | 0.072 | -15.835 | 0.000 |
_STATE 21 |
-0.124 | 0.064 | -1.954 | 0.051 |
_STATE 22 |
-0.203 | 0.068 | -2.973 | 0.003 |
_STATE 23 |
-0.588 | 0.088 | -6.699 | 0.000 |
_STATE 24 |
-0.834 | 0.064 | -13.013 | 0.000 |
_STATE 25 |
-0.449 | 0.058 | -7.685 | 0.000 |
_STATE 26 |
-0.402 | 0.056 | -7.234 | 0.000 |
_STATE 27 |
-1.425 | 0.061 | -23.509 | 0.000 |
_STATE 28 |
-0.148 | 0.079 | -1.865 | 0.062 |
_STATE 29 |
-0.587 | 0.060 | -9.812 | 0.000 |
_STATE 30 |
-1.044 | 0.099 | -10.570 | 0.000 |
_STATE 31 |
-1.403 | 0.081 | -17.333 | 0.000 |
_STATE 32 |
-0.712 | 0.073 | -9.694 | 0.000 |
_STATE 33 |
-0.671 | 0.088 | -7.616 | 0.000 |
_STATE 34 |
-0.653 | 0.059 | -11.098 | 0.000 |
_STATE 35 |
-0.094 | 0.080 | -1.168 | 0.243 |
_STATE 36 |
-0.692 | 0.052 | -13.414 | 0.000 |
_STATE 37 |
-0.779 | 0.056 | -13.917 | 0.000 |
_STATE 38 |
-1.435 | 0.115 | -12.524 | 0.000 |
_STATE 39 |
-0.410 | 0.054 | -7.616 | 0.000 |
_STATE 40 |
-0.337 | 0.068 | -4.950 | 0.000 |
_STATE 41 |
-0.194 | 0.064 | -3.011 | 0.003 |
_STATE 42 |
-0.575 | 0.053 | -10.823 | 0.000 |
_STATE 44 |
-0.498 | 0.099 | -5.031 | 0.000 |
_STATE 45 |
-0.289 | 0.065 | -4.417 | 0.000 |
_STATE 46 |
-1.799 | 0.109 | -16.461 | 0.000 |
_STATE 47 |
-0.137 | 0.060 | -2.307 | 0.021 |
_STATE 48 |
-0.959 | 0.050 | -19.104 | 0.000 |
_STATE 49 |
-0.883 | 0.071 | -12.445 | 0.000 |
_STATE 50 |
-0.696 | 0.118 | -5.885 | 0.000 |
_STATE 51 |
-0.930 | 0.058 | -16.056 | 0.000 |
_STATE 53 |
-0.589 | 0.058 | -10.148 | 0.000 |
_STATE 54 |
0.343 | 0.079 | 4.313 | 0.000 |
_STATE 55 |
-0.908 | 0.060 | -15.220 | 0.000 |
_STATE 56 |
-1.015 | 0.126 | -8.080 | 0.000 |
_STATE 66 |
-0.843 | 0.595 | -1.416 | 0.157 |
IMONTH2 | 0.074 | 0.028 | 2.603 | 0.009 |
IMONTH3 | 0.110 | 0.028 | 3.932 | 0.000 |
IMONTH4 | 0.171 | 0.030 | 5.651 | 0.000 |
IMONTH5 | 0.329 | 0.029 | 11.169 | 0.000 |
IMONTH6 | 0.234 | 0.028 | 8.220 | 0.000 |
IMONTH7 | 0.145 | 0.028 | 5.128 | 0.000 |
IMONTH8 | 0.262 | 0.028 | 9.320 | 0.000 |
IMONTH9 | 0.382 | 0.029 | 13.259 | 0.000 |
IMONTH10 | 0.310 | 0.030 | 10.417 | 0.000 |
IMONTH11 | 0.269 | 0.030 | 9.082 | 0.000 |
IMONTH12 | 0.377 | 0.029 | 13.190 | 0.000 |
X_race8 | -1.150 | 0.016 | -74.087 | 0.000 |
difference_HS30 | 0.701 | 0.153 | 4.576 | 0.000 |
X_race8:difference_HS30 | -0.967 | 0.286 | -3.378 | 0.001 |
Tweets becoming less hateful is associated with a decrease of bad mental health days for Latinos relative to whites.
Note: the interpretation of this one is a little confusing, I am interpreting as if month three has a score of 4 and then month two has a score of 3, this would be a positive score where things are improving. If month three has a score of 3 and month 2 a score of 3 then this would be a negative score where things are getting worse. Thus i am interpreting the negative interaction to refer to when scores are getting better then bad mental health days are lower. Happy to discuss this interpretation
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 3.758 | 0.113 | 33.392 | 0.000 |
X_age_g | -0.565 | 0.003 | -173.424 | 0.000 |
X_educag | -0.714 | 0.005 | -136.403 | 0.000 |
female | 1.349 | 0.011 | 125.041 | 0.000 |
_STATE 2 |
-1.139 | 0.130 | -8.784 | 0.000 |
_STATE 4 |
-0.499 | 0.058 | -8.557 | 0.000 |
_STATE 5 |
0.071 | 0.072 | 0.981 | 0.326 |
_STATE 6 |
-0.740 | 0.049 | -14.991 | 0.000 |
_STATE 8 |
-0.868 | 0.060 | -14.377 | 0.000 |
_STATE 9 |
-0.785 | 0.068 | -11.619 | 0.000 |
_STATE 10 |
-0.593 | 0.112 | -5.290 | 0.000 |
_STATE 11 |
-1.462 | 0.154 | -9.514 | 0.000 |
_STATE 12 |
-0.323 | 0.051 | -6.332 | 0.000 |
_STATE 13 |
-0.627 | 0.057 | -10.916 | 0.000 |
_STATE 15 |
-0.806 | 0.130 | -6.192 | 0.000 |
_STATE 16 |
-1.025 | 0.083 | -12.313 | 0.000 |
_STATE 17 |
-0.952 | 0.054 | -17.762 | 0.000 |
_STATE 18 |
-0.447 | 0.059 | -7.628 | 0.000 |
_STATE 19 |
-1.358 | 0.068 | -19.873 | 0.000 |
_STATE 20 |
-1.141 | 0.072 | -15.925 | 0.000 |
_STATE 21 |
-0.121 | 0.064 | -1.898 | 0.058 |
_STATE 22 |
-0.206 | 0.068 | -3.026 | 0.002 |
_STATE 23 |
-0.594 | 0.088 | -6.773 | 0.000 |
_STATE 24 |
-0.833 | 0.064 | -12.994 | 0.000 |
_STATE 25 |
-0.449 | 0.058 | -7.695 | 0.000 |
_STATE 26 |
-0.403 | 0.056 | -7.260 | 0.000 |
_STATE 27 |
-1.432 | 0.061 | -23.638 | 0.000 |
_STATE 28 |
-0.142 | 0.079 | -1.792 | 0.073 |
_STATE 29 |
-0.591 | 0.060 | -9.892 | 0.000 |
_STATE 30 |
-1.057 | 0.099 | -10.707 | 0.000 |
_STATE 31 |
-1.407 | 0.081 | -17.396 | 0.000 |
_STATE 32 |
-0.718 | 0.073 | -9.780 | 0.000 |
_STATE 33 |
-0.681 | 0.088 | -7.728 | 0.000 |
_STATE 34 |
-0.609 | 0.059 | -10.354 | 0.000 |
_STATE 35 |
-0.090 | 0.080 | -1.130 | 0.258 |
_STATE 36 |
-0.691 | 0.052 | -13.394 | 0.000 |
_STATE 37 |
-0.784 | 0.056 | -14.019 | 0.000 |
_STATE 38 |
-1.430 | 0.114 | -12.491 | 0.000 |
_STATE 39 |
-0.411 | 0.054 | -7.628 | 0.000 |
_STATE 40 |
-0.345 | 0.068 | -5.070 | 0.000 |
_STATE 41 |
-0.200 | 0.064 | -3.102 | 0.002 |
_STATE 42 |
-0.565 | 0.053 | -10.652 | 0.000 |
_STATE 44 |
-0.498 | 0.099 | -5.035 | 0.000 |
_STATE 45 |
-0.297 | 0.065 | -4.540 | 0.000 |
_STATE 46 |
-1.803 | 0.109 | -16.503 | 0.000 |
_STATE 47 |
-0.135 | 0.060 | -2.272 | 0.023 |
_STATE 48 |
-0.964 | 0.050 | -19.201 | 0.000 |
_STATE 49 |
-0.894 | 0.071 | -12.605 | 0.000 |
_STATE 50 |
-0.701 | 0.118 | -5.927 | 0.000 |
_STATE 51 |
-0.925 | 0.058 | -15.983 | 0.000 |
_STATE 53 |
-0.593 | 0.058 | -10.221 | 0.000 |
_STATE 54 |
0.344 | 0.079 | 4.336 | 0.000 |
_STATE 55 |
-0.912 | 0.060 | -15.288 | 0.000 |
_STATE 56 |
-1.011 | 0.126 | -8.052 | 0.000 |
_STATE 66 |
-0.844 | 0.595 | -1.418 | 0.156 |
IMONTH2 | 0.099 | 0.028 | 3.497 | 0.000 |
IMONTH3 | 0.141 | 0.028 | 5.022 | 0.000 |
IMONTH4 | 0.192 | 0.029 | 6.689 | 0.000 |
IMONTH5 | 0.322 | 0.028 | 11.356 | 0.000 |
IMONTH6 | 0.232 | 0.028 | 8.358 | 0.000 |
IMONTH7 | 0.141 | 0.028 | 5.042 | 0.000 |
IMONTH8 | 0.257 | 0.028 | 9.128 | 0.000 |
IMONTH9 | 0.353 | 0.028 | 12.403 | 0.000 |
IMONTH10 | 0.205 | 0.028 | 7.252 | 0.000 |
IMONTH11 | 0.145 | 0.028 | 5.096 | 0.000 |
IMONTH12 | 0.218 | 0.029 | 7.555 | 0.000 |
X_race8 | 0.918 | 0.220 | 4.173 | 0.000 |
rolling_sd_HS90 | 3.072 | 0.073 | 41.826 | 0.000 |
X_race8:rolling_sd_HS90 | -1.527 | 0.161 | -9.494 | 0.000 |
A one unit increase in the standard deviation is associated with 3.07 increased bad mental health days for Whites and 1.54 for Latinos.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 7.857 | 0.061 | 129.224 | 0.000 |
X_age_g | -0.563 | 0.003 | -172.783 | 0.000 |
X_educag | -0.710 | 0.005 | -135.669 | 0.000 |
female | 1.349 | 0.011 | 124.911 | 0.000 |
_STATE 2 |
-1.139 | 0.130 | -8.781 | 0.000 |
_STATE 4 |
-0.488 | 0.058 | -8.371 | 0.000 |
_STATE 5 |
0.084 | 0.072 | 1.165 | 0.244 |
_STATE 6 |
-0.740 | 0.049 | -14.983 | 0.000 |
_STATE 8 |
-0.855 | 0.060 | -14.151 | 0.000 |
_STATE 9 |
-0.783 | 0.068 | -11.577 | 0.000 |
_STATE 10 |
-0.585 | 0.112 | -5.220 | 0.000 |
_STATE 11 |
-1.470 | 0.154 | -9.563 | 0.000 |
_STATE 12 |
-0.319 | 0.051 | -6.255 | 0.000 |
_STATE 13 |
-0.616 | 0.057 | -10.713 | 0.000 |
_STATE 15 |
-0.814 | 0.130 | -6.252 | 0.000 |
_STATE 16 |
-1.008 | 0.083 | -12.114 | 0.000 |
_STATE 17 |
-0.948 | 0.054 | -17.667 | 0.000 |
_STATE 18 |
-0.447 | 0.059 | -7.623 | 0.000 |
_STATE 19 |
-1.358 | 0.068 | -19.862 | 0.000 |
_STATE 20 |
-1.137 | 0.072 | -15.851 | 0.000 |
_STATE 21 |
-0.125 | 0.064 | -1.958 | 0.050 |
_STATE 22 |
-0.202 | 0.068 | -2.966 | 0.003 |
_STATE 23 |
-0.585 | 0.088 | -6.671 | 0.000 |
_STATE 24 |
-0.833 | 0.064 | -12.989 | 0.000 |
_STATE 25 |
-0.449 | 0.058 | -7.686 | 0.000 |
_STATE 26 |
-0.402 | 0.056 | -7.237 | 0.000 |
_STATE 27 |
-1.424 | 0.061 | -23.483 | 0.000 |
_STATE 28 |
-0.145 | 0.079 | -1.830 | 0.067 |
_STATE 29 |
-0.588 | 0.060 | -9.836 | 0.000 |
_STATE 30 |
-1.046 | 0.099 | -10.591 | 0.000 |
_STATE 31 |
-1.402 | 0.081 | -17.327 | 0.000 |
_STATE 32 |
-0.710 | 0.073 | -9.666 | 0.000 |
_STATE 33 |
-0.669 | 0.088 | -7.595 | 0.000 |
_STATE 34 |
-0.657 | 0.059 | -11.164 | 0.000 |
_STATE 35 |
-0.093 | 0.080 | -1.159 | 0.246 |
_STATE 36 |
-0.691 | 0.052 | -13.387 | 0.000 |
_STATE 37 |
-0.778 | 0.056 | -13.914 | 0.000 |
_STATE 38 |
-1.433 | 0.115 | -12.511 | 0.000 |
_STATE 39 |
-0.409 | 0.054 | -7.592 | 0.000 |
_STATE 40 |
-0.337 | 0.068 | -4.952 | 0.000 |
_STATE 41 |
-0.195 | 0.064 | -3.026 | 0.002 |
_STATE 42 |
-0.573 | 0.053 | -10.790 | 0.000 |
_STATE 44 |
-0.496 | 0.099 | -5.019 | 0.000 |
_STATE 45 |
-0.289 | 0.065 | -4.419 | 0.000 |
_STATE 46 |
-1.800 | 0.109 | -16.469 | 0.000 |
_STATE 47 |
-0.136 | 0.060 | -2.286 | 0.022 |
_STATE 48 |
-0.960 | 0.050 | -19.110 | 0.000 |
_STATE 49 |
-0.884 | 0.071 | -12.459 | 0.000 |
_STATE 50 |
-0.695 | 0.118 | -5.880 | 0.000 |
_STATE 51 |
-0.927 | 0.058 | -16.012 | 0.000 |
_STATE 53 |
-0.588 | 0.058 | -10.135 | 0.000 |
_STATE 54 |
0.343 | 0.079 | 4.320 | 0.000 |
_STATE 55 |
-0.909 | 0.060 | -15.237 | 0.000 |
_STATE 56 |
-1.014 | 0.126 | -8.072 | 0.000 |
_STATE 66 |
-0.841 | 0.595 | -1.413 | 0.158 |
IMONTH2 | 0.078 | 0.029 | 2.719 | 0.007 |
IMONTH3 | 0.119 | 0.028 | 4.191 | 0.000 |
IMONTH4 | 0.211 | 0.029 | 7.218 | 0.000 |
IMONTH5 | 0.367 | 0.029 | 12.664 | 0.000 |
IMONTH6 | 0.266 | 0.028 | 9.354 | 0.000 |
IMONTH7 | 0.167 | 0.029 | 5.795 | 0.000 |
IMONTH8 | 0.270 | 0.029 | 9.339 | 0.000 |
IMONTH9 | 0.411 | 0.029 | 14.041 | 0.000 |
IMONTH10 | 0.356 | 0.029 | 12.343 | 0.000 |
IMONTH11 | 0.310 | 0.029 | 10.833 | 0.000 |
IMONTH12 | 0.386 | 0.029 | 13.491 | 0.000 |
X_race8 | -1.250 | 0.049 | -25.275 | 0.000 |
percent_negative_HS90 | 0.017 | 0.033 | 0.532 | 0.595 |
X_race8:percent_negative_HS90 | 0.136 | 0.066 | 2.052 | 0.040 |
For every one unit increase in percent negative Latinos have .136 increase in bad days mental health. No significance for whites
##
## INFO: To supress printing the parameers in beast(), set print.options = 0
## INFO: To supress printing the parameers in beast.irreg(),set print.options = 0
## INFO: To supress printing the parameers in beast123(), set extra$printOptions = 0
## INFO: To supress warning messages in beast(), set quiet = 1
## INFO: To supress warning messages in beast.irreg(), set quiet = 1
## INFO: To supress warning messages in beast123(), set extra$quiet = 1
##
## #--------------------------------------------------#
## # Brief summary of Input Data #
## #--------------------------------------------------#
## Data Dimension: One signal of length 75
## IsOrdered : Yes, ordered in time
## IsRegular : Yes, evenly spaced at interval of 1 (unknown unit)
## hasSeasonCmpnt: FALSE | no periodic or seasonal component. The model Y=Trend+Error is fitted.
## HasOutlierCmpt: FALSE | If true, Y=Trend+Outlier+Error (experimental) is fitted instead of Y=Trend+Error
## Detrend : FALSE | If true, remove a global trend component before running BEAST & add it back after BEAST
## MissingValue : NaN flagged as missing values
## MaxMissingRate: if more than 75% of data is missing, BEAST will skip it.
##
##
## #--------------------------------------------------#
## # OPTIONS used in the MCMC inference #
## #--------------------------------------------------#
##
## #......Start of displaying 'MetaData' ......
## metadata = list() # metadata is used to interpret the input data Y
## metadata$season = 'none' # trend-only data with no periodic variation
## metadata$startTime = 1 # unknown unit
## metadata$deltaTime = 1 # unknown unit
## metadata$maxMissingRate = 0.75 # if more than 75% of data is missing, BEAST will skip it.
## metadata$detrend = FALSE # if true,remove a global trend cmpnt before running BEAST & add it back later
## #........End of displaying MetaData ........
##
## #......Start of displaying 'prior' ......
## prior = list() # prior is the true model parameters of BEAST
## prior$trendMinOrder = 0 # torder.minmax[1]: min trend polynomial order alllowed
## prior$trendMaxOrder = 1 # torder.minmax[2]: max trend polynomial order alllowed
## prior$trendMinKnotNum = 0 # tcp.minmax[1] : min num of chngpts in trend allowed
## prior$trendMaxKnotNum = 10 # tcp.minmax[2] : max num of chngpts in trend allowed
## prior$trendMinSepDist = 3 # tseg.min : min trend segment length in terms of datapoints
## prior$trendLeftMargin = 3 # tseg.leftmargin : no trend chngpts in the first 3 datapoints
## prior$trendRightMargin = 3 # tseg.rightmargin: no trend chngpts in the last 3 datapoints
## prior$K_MAX = 22 # max number of terms in general linear model (relevant only at small values)
## prior$precValue = 1.5 # useful mainly when precPriorType='constant'
## prior$modelPriorType = 1
## prior$precPriorType = 'uniform'
## #......End of displaying prior ......
##
## #......Start of displaying 'mcmc' ......
## mcmc = list() # mcmc is not BEAST parameters but MCMC sampler options
## mcmc$seed = 0 # A nonzero seed to replicate among runs
## mcmc$samples = 8000 # Number of samples saved per chain: the larger, the better
## mcmc$thinningFactor = 5 # Thinning the chain: the larger, the better
## mcmc$burnin = 200 # Number of initial samples discarded: the larger, the better
## mcmc$chainNumber = 3 # Number of chains: the larger, the better
## mcmc$maxMoveStepSize = 4 # Max step of jumping from current changepoint: No need to change
## mcmc$trendResamplingOrderProb = 0.1 # Proposal probability of sampling trend polynominal order
## mcmc$credIntervalAlphaLevel = 0.95 # The alphal level for Credible Intervals
## # Total number of models randomly visited in BEAST is (burnin+sampples*thinFactor)*chainNumber=120600
## #......End of displaying mcmc ......
##
## #......Start of displaying 'extra' ......
## extra = list() # extra is used to configure output/computing options
## extra$dumpInputData = TRUE # if true, dump a copy of the input data as o$data
## extra$whichOutputDimIsTime = 1 # 1,2 or 3; which dim of the result is time; used for a 2D/3D input Y
## extra$computeCredible = FALSE # if true, compute credibiel interval of estimated Y (e.g., o$trend$CI)
## extra$fastCIComputation = TRUE # if true, do not sort but approximiate CI
## extra$computeTrendOrder = TRUE # if true, dump the estimated trend polynomial order
## extra$computeTrendChngpt = TRUE # if true, dump the trend changepoints (tcp) in the output
## extra$computeTrendSlope = TRUE # if true, dump the time-varying slope in trend
## extra$tallyPosNegTrendJump = TRUE # differentiate postive/negative jumps at tcp
## extra$tallyIncDecTrendJump = TRUE # differentiate increased/decreased slopes at tcp
## extra$printProgressBar = TRUE # if true, show an ascii progressbar
## extra$printOptions = TRUE # if true, print the option of the BEAST run
## extra$consoleWidth = 80 # an integer specifying the console width for printing
## extra$numThreadsPerCPU = 2 # each cpu core spawns 2 concurrent threads (for beast123())
## extra$numParThreads = 0 # total number of threads (for beast123() only)
## #......End of displaying extra ......
##
## -Progress: 0.0% done[>********************************************************]\Progress: 4.2% done[==>******************************************************]|Progress: 8.3% done[=====>***************************************************]/Progress: 12.5% done[=======>*************************************************]-Progress: 16.7% done[==========>**********************************************]\Progress: 20.8% done[============>********************************************]|Progress: 25.0% done[==============>******************************************]/Progress: 29.2% done[=================>***************************************]-Progress: 33.3% done[===================>*************************************]\Progress: 37.5% done[=====================>***********************************]|Progress: 41.7% done[========================>********************************]/Progress: 45.8% done[==========================>******************************]-Progress: 50.0% done[=============================>***************************]\Progress: 54.2% done[===============================>*************************]|Progress: 58.3% done[=================================>***********************]/Progress: 62.5% done[====================================>********************]-Progress: 66.7% done[======================================>******************]\Progress: 70.8% done[========================================>****************]|Progress: 75.0% done[===========================================>*************]/Progress: 79.2% done[=============================================>***********]-Progress: 83.3% done[================================================>********]\Progress: 87.5% done[==================================================>******]|Progress: 91.7% done[====================================================>****]/Progress: 95.8% done[=======================================================>*]-Progress:100.0% done[=========================================================]
## [1;31m#####################################################################
## # Seasonal Changepoints #
## #####################################################################
## [0m No seasonal/periodic component present (i.e., season='none')
##
##
## [1;31m#####################################################################
## # Trend Changepoints #
## #####################################################################
## [0m.-------------------------------------------------------------------.
## | Ascii plot of probability distribution for number of chgpts (ncp) |
## .-------------------------------------------------------------------.
## |Pr(ncp = 0 )=0.000|* |
## |Pr(ncp = 1 )=0.000|* |
## |Pr(ncp = 2 )=0.085|************* |
## |Pr(ncp = 3 )=0.228|********************************** |
## |Pr(ncp = 4 )=0.322|*********************************************** |
## |Pr(ncp = 5 )=0.220|********************************* |
## |Pr(ncp = 6 )=0.099|*************** |
## |Pr(ncp = 7 )=0.034|***** |
## |Pr(ncp = 8 )=0.009|** |
## |Pr(ncp = 9 )=0.002|* |
## |Pr(ncp = 10)=0.000|* |
## .-------------------------------------------------------------------.
## | Summary for number of Trend ChangePoints (tcp) |
## .-------------------------------------------------------------------.
## |ncp_max = 10 | MaxTrendKnotNum: A parameter you set |
## |ncp_mode = 4 | Pr(ncp= 4)=0.32: There is a 32.2% probability |
## | | that the trend component has 4 changepoint(s).|
## |ncp_mean = 4.17 | Sum{ncp*Pr(ncp)} for ncp = 0,...,10 |
## |ncp_pct10 = 3.00 | 10% percentile for number of changepoints |
## |ncp_median = 4.00 | 50% percentile: Median number of changepoints |
## |ncp_pct90 = 6.00 | 90% percentile for number of changepoints |
## .-------------------------------------------------------------------.
## | List of probable trend changepoints ranked by probability of |
## | occurrence: Please combine the ncp reported above to determine |
## | which changepoints below are practically meaningful |
## '-------------------------------------------------------------------'
## |tcp# |time (cp) |prob(cpPr) |
## |------------------|---------------------------|--------------------|
## |1 |50.000000 |0.99625 |
## |2 |71.000000 |0.96696 |
## |3 |60.000000 |0.88163 |
## |4 |65.000000 |0.48013 |
## |5 |39.000000 |0.18246 |
## |6 |56.000000 |0.15979 |
## |7 |7.000000 |0.09750 |
## |8 |19.000000 |0.03000 |
## .-------------------------------------------------------------------.
##
##
##
## NOTE: the beast output object 'o' is a LIST. Type 'str(o)' to see all
## the elements in it. Or use 'plot(o)' or 'plot(o,interactive=TRUE)' to
## plot the model output.
Monthly changepoints are all post Trump presidency and related to political events. Final decrease of hate speech takes place after impeachment inquiry begins for Trump.
[1] “2018-01-01” - Federal government shut down threatened if border wall is not funded. https://en.wikipedia.org/wiki/Category:January_2018_events_in_the_United_States
[2] “2018-11-01” - Midterm election. https://en.wikipedia.org/wiki/Category:November_2018_events_in_the_United_States
[3] “2019-03-01” - Trump speech at 2019 Conservative Political Action Conference. https://en.wikipedia.org/wiki/Timeline_of_the_Donald_Trump_presidency_(2019_Q1)
[4] “2019-09-01” - Impeachment inquiry into Donald Trump. https://en.wikipedia.org/wiki/Category:September_2019_events_in_the_United_States
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 7.807 | 0.080 | 97.838 | 0.000 |
X_age_g | -0.585 | 0.012 | -50.800 | 0.000 |
X_educag | -0.766 | 0.019 | -40.281 | 0.000 |
female | 1.479 | 0.038 | 38.786 | 0.000 |
treatment | -1.580 | 0.067 | -23.630 | 0.000 |
post | -0.189 | 0.043 | -4.431 | 0.000 |
interaction | 0.276 | 0.096 | 2.890 | 0.004 |
Treatment (-1.57953): This indicates that Latinos (the “treatment group”) report 1.58 fewer poor mental health days compared to Whites (the “control group”) before January 1, 2018, holding other variables constant.
Post (-0.18872): Individuals in the post-intervention period (after January 1, 2018) report about 0.19 fewer poor mental health days compared to those in the pre-intervention period, holding other variables constant.
Interaction (0.27611): This interaction term captures the additional effect of being both Latino and in the post-intervention period. Specifically, Latinos in the post-intervention period report 0.087 more poor mental health days than what would be expected from the separate effects of being Latino and being in the post-intervention period alone. This suggests that, while Latinos generally report fewer poor mental health days (as seen from the treatment coefficient), their mental health worsens slightly after January 1, 2018, relative to Whites, when considering the interaction. Although it seems like a small effect, the Lancet paper found that police killings of black americans led to an excess of 0.14 bad mental health days aka a relative increase of 3.3%. .087 days increase for Latinos is a 2.36% increase relative to weighted average bad days mental health.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.259 | 0.003 | 80.319 | 0.000 |
X_age_g | -0.018 | 0.000 | -38.422 | 0.000 |
female | 0.049 | 0.002 | 32.041 | 0.000 |
X_educag | -0.031 | 0.001 | -40.098 | 0.000 |
treatment | -0.053 | 0.003 | -19.778 | 0.000 |
post | -0.006 | 0.002 | -3.416 | 0.001 |
interaction | 0.011 | 0.004 | 2.973 | 0.003 |
Treatment (-0.0534540): Latinos (the treatment group) report 5.35 percentage points fewer frequent bad mental health days compared to Whites (the control group), before January 1, 2018. This suggests that Latinos tend to have better mental health outcomes than Whites in terms of frequent bad mental health days.
Post (-0.0058823): In the post-intervention period (after January 1, 2018), there is a decrease of 0.59 percentage points in frequent bad mental health days, holding other factors constant. This suggests a small overall improvement in mental health during the post-intervention period.
Interaction (0.0114819): The interaction term indicates that Latinos in the post-intervention period experience an increase of 0.5 (0.11-0.06) percentage points in frequent bad mental health days compared to what would be expected from the additive effects of being Latino and being in the post-intervention period alone. This suggests that although Latinos generally report fewer frequent bad mental health days, this advantage decreases slightly in the post-intervention period compared to Whites.
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 0.576 | 0.005 | 123.670 | 0.000 |
X_age_g | -0.062 | 0.001 | -92.374 | 0.000 |
female | 0.115 | 0.002 | 51.514 | 0.000 |
X_educag | -0.008 | 0.001 | -7.108 | 0.000 |
treatment | -0.091 | 0.004 | -23.335 | 0.000 |
post | -0.016 | 0.002 | -6.472 | 0.000 |
interaction | -0.004 | 0.006 | -0.802 | 0.422 |
Treatment (-0.0910991): Latinos (treatment group) report 9.11 percentage points fewer bad mental health days compared to Whites (control group), before January 1, 2018. This implies that Latinos tend to report better mental health (in terms of fewer bad mental health days) compared to Whites
Post (-0.0160990): Being in the post-intervention period (after January 1, 2018) is associated with a small decrease of 1.61 percentage points in any bad mental health days, suggesting an improvement in mental health after the intervention.
Interaction (-0.0044754): The interaction term between treatment (Latinos) and post (post-intervention period) is not statistically significant (p-value = 0.422). The estimated coefficient is small and negative (-0.0044754), indicating no meaningful change in the mental health of Latinos relative to Whites in the post-intervention period.
term | estimate | std.error | statistic | p.value | conf.low | conf.high |
---|---|---|---|---|---|---|
(Intercept) | 7.370 | 0.022 | 339.995 | 0.000 | 7.328 | 7.413 |
X_age_g | -0.561 | 0.003 | -172.657 | 0.000 | -0.567 | -0.554 |
X_educag | -0.730 | 0.005 | -140.324 | 0.000 | -0.740 | -0.720 |
female | 1.353 | 0.011 | 125.236 | 0.000 | 1.331 | 1.374 |
treatment | -1.176 | 0.017 | -68.165 | 0.000 | -1.210 | -1.142 |
post_1 | 0.283 | 0.018 | 15.844 | 0.000 | 0.248 | 0.318 |
post_2 | 0.438 | 0.027 | 16.106 | 0.000 | 0.384 | 0.491 |
post_3 | 0.697 | 0.022 | 32.236 | 0.000 | 0.655 | 0.739 |
post_4 | 0.800 | 0.027 | 29.218 | 0.000 | 0.747 | 0.854 |
interaction_1 | -0.175 | 0.039 | -4.433 | 0.000 | -0.252 | -0.098 |
interaction_2 | 0.089 | 0.061 | 1.457 | 0.145 | -0.031 | 0.210 |
interaction_3 | -0.298 | 0.047 | -6.377 | 0.000 | -0.389 | -0.206 |
interaction_4 | -0.248 | 0.060 | -4.121 | 0.000 | -0.366 | -0.130 |
In this model we see that in periods 1, 3, and 4 both Whites and Latinos have worse mental health post treatment, but that Whites have a bigger effect. In period 2 we see Latinos have a bigger effect than whites, but still a mental health benefit.
term | estimate | std.error | statistic | p.value | conf.low | conf.high |
---|---|---|---|---|---|---|
(Intercept) | 0.244 | 0.001 | 277.610 | 0.000 | 0.243 | 0.246 |
X_age_g | -0.017 | 0.000 | -128.604 | 0.000 | -0.017 | -0.017 |
X_educag | -0.029 | 0.000 | -138.389 | 0.000 | -0.030 | -0.029 |
female | 0.044 | 0.000 | 100.771 | 0.000 | 0.043 | 0.045 |
treatment | -0.039 | 0.001 | -56.310 | 0.000 | -0.041 | -0.038 |
post_1 | 0.010 | 0.001 | 13.155 | 0.000 | 0.008 | 0.011 |
post_2 | 0.016 | 0.001 | 14.269 | 0.000 | 0.014 | 0.018 |
post_3 | 0.024 | 0.001 | 27.669 | 0.000 | 0.023 | 0.026 |
post_4 | 0.027 | 0.001 | 24.629 | 0.000 | 0.025 | 0.030 |
interaction_1 | -0.005 | 0.002 | -3.357 | 0.001 | -0.009 | -0.002 |
interaction_2 | 0.003 | 0.002 | 1.098 | 0.272 | -0.002 | 0.008 |
interaction_3 | -0.011 | 0.002 | -5.760 | 0.000 | -0.015 | -0.007 |
interaction_4 | -0.009 | 0.002 | -3.878 | 0.000 | -0.014 | -0.005 |
In this model we see that in periods 1, 3, and 4 both Whites and Latinos have worse mental health post treatment, but that Whites have a bigger effect. In period 2 we see Latinos have a bigger effect than whites, but still a mental health benefit.
term | estimate | std.error | statistic | p.value | conf.low | conf.high |
---|---|---|---|---|---|---|
(Intercept) | 0.553 | 0.001 | 436.019 | 0.000 | 0.550 | 0.555 |
X_age_g | -0.060 | 0.000 | -314.712 | 0.000 | -0.060 | -0.059 |
X_educag | -0.010 | 0.000 | -32.245 | 0.000 | -0.010 | -0.009 |
female | 0.111 | 0.001 | 175.830 | 0.000 | 0.110 | 0.112 |
treatment | -0.070 | 0.001 | -69.254 | 0.000 | -0.072 | -0.068 |
post_1 | 0.019 | 0.001 | 17.955 | 0.000 | 0.017 | 0.021 |
post_2 | 0.028 | 0.002 | 17.382 | 0.000 | 0.025 | 0.031 |
post_3 | 0.048 | 0.001 | 38.291 | 0.000 | 0.046 | 0.051 |
post_4 | 0.060 | 0.002 | 37.284 | 0.000 | 0.057 | 0.063 |
interaction_1 | -0.021 | 0.002 | -8.989 | 0.000 | -0.025 | -0.016 |
interaction_2 | -0.007 | 0.004 | -2.047 | 0.041 | -0.014 | 0.000 |
interaction_3 | -0.036 | 0.003 | -13.096 | 0.000 | -0.041 | -0.030 |
interaction_4 | -0.034 | 0.004 | -9.683 | 0.000 | -0.041 | -0.027 |
In period one, White mental health worsens but Latino mental health improves. In periods 2, 3, and 4 both white and latino mental health worsen but the effect is larger for Latinos.