1) in R print and calculate them: Differentiate the following
functions:
a) y = 4x^3
dy/dx = 12x^2 ## b) y = 4x^3 − x^2 + 3x + 7 dy/dx = 12x^2 - 2x + 3 ##
c) y = 2x^5 + 3x^3 + 7x^2 − x − 2 dy/dx = 10 x^4 +9 x^2 +14x - 1 ## d) y
= 4x^(1/2) − (1/3)x^2 + 3/(x^2) + 5/x dy/dx = -2x/3 + 2/ (x^(1/2)) -
5/(x^2) - 6/ (x^3) ## e) y = ln (4x^3− x^2+ 3) dy/dx = (12x^2 - 2x)/
(4x^3 - x^2 + 3)
2) Differentiate y with respect to x using implicit
differentiation
f) 3𝑥^2 − 𝑦^2 = 18
6x - 2y (dy/dx) = 0 dy/dx = 3x/y
g) 5y/(x+1) = 25
[5(dy/dx) (x+1) - 5y]/(x+1)^2 = 0 5(dy/dx)/(x+1) - 5y/(x+1)^2 = 0
dy/dx = y/(x+1)
#3) Differentiate y with respect to x using chain rule and/or the
quotient rule.
h) 𝑦 = (2x^3 + x)^4
u = 2x^3 + x dy/dx = u^4 = 4 (6x^2 + 1) (2x^3 + x)^3
i) y = x^3 (2x + 5)^4
u=2x+5 dy/dx=x^3 u^4 dy/dx = 3x^2 (2x +5 )^4 + 8x^3 (2x+5)^3 = x^2
(2x+5)^3 (8x + 3(2x+5))
j) 𝑦 = 5x/(x+1)
dy/dx = [5(x+1)-5x]/(x+1)^2 = 5/(x+1)^2
k) y^2 + 2y = x
2y(dy/dx) + 2(dy/dx) = 1 dy/dx = 1 / 2(y + 1)
l) 100 = 5y/[x^3 (2x + 5)^4 ] *
100[x^3 (2x + 5)^4 ] = 5y u=(2x+5)^4 20[x^3 (2x + 5)^4 ] = y dy/dx =
20[4(2x + 5)^3 x^3 + 3x^2 (2x + 5)^4]
m) 𝑦 = (sqrt(x^2 + x - 1))/ (x^2 -1) *
u = x^2 - 1 sqrt(u+x) / u = [(1/2) (u+x)^(-1/2) u - du/dx sqrt(x^2 +
x - 1)]/u^2 dy/dx = - (2x^3 + 3x^2 - 2x + 1)/[2(X^2 + x -1)^(1/2)
(x+1)^2 (x-1)^2)
n) y = 𝑥 / (𝑒^(4x)) + ln (4x^2 ) *
dy/dx = [(𝑒^(4x)) - 4(𝑒^(4x)) x]/ (𝑒^(8x)) + 2 (4/4x) =
(1-4x)/(𝑒^(4x) + 2/x
4) Let’s look at a utility function that satisfies the assumptions
that more is better and that marginal utilities are diminishing. Suppose
a consumer’s preference between food and clothing can be represented by
the utility function U = sqrt(xy), where x measures the number of units
of food and y the number of units of Clothing.
a) Show that a consumer with this utility function believes that
more is better for each good.
MUx = ∂x/∂U = sqrt(y) MUy = ∂y/∂U = sqrt(0.5xy^(-0.5)) MUx (Marginal
Utility of Food) represents the extra utility gained from consuming one
more unit of food, while keeping clothing constant. It depends on the
square root of the number of clothing units, meaning as clothing (y)
increases, the marginal utility of food rises but at a decreasing
rate.
MUy (Marginal Utility of Clothing) represents the extra utility from
consuming one more unit of clothing, while keeping food constant. It is
proportional to the square root of the food units (x), meaning as more
clothing is consumed, its marginal utility decreases, and it’s also
influenced by the amount of food consumed. To show that a consumer
believes more is better for each good, we need to confirm that both MUx
and MUy are positive.
MUx is always positive since the square root of a positive number is
positive. MUy is also positive as long as both x and y are positive.
Thus, more of both food and clothing leads to higher marginal utilities,
indicating that the consumer believes more is better for each good.
b) Show that the marginal utility of food is diminishing and that
the marginal utility of clothing is diminishing.
To show diminishing marginal utility, we check the second derivatives
of the utility function with respect to x and y.
∂^2 U / ∂ x^2 = 0 meaning the marginal utility of food is constant,
not diminishing ∂^2 U / ∂ y^2 = -0.25 xy^(-1.5), which is negative for
positive x and y, confirming that the marginal utility of clothing is
diminishing as more clothing is consumed
Thus, the marginal utility of clothing diminishes, while the marginal
utility of food remains constant.
LS0tDQp0aXRsZTogIk1pY3JvMjRmYWxsQXNzbjIiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIDEpIGluIFIgcHJpbnQgYW5kIGNhbGN1bGF0ZSB0aGVtOiBEaWZmZXJlbnRpYXRlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zOg0KDQojIyBhKSB5ID0gNHheMw0KZHkvZHggPSAxMnheMg0KIyMgYikgeSA9IDR4XjMg4oiSIHheMiArIDN4ICsgNw0KZHkvZHggPSAxMnheMiAtIDJ4ICsgMw0KIyMgYykgeSA9IDJ4XjUgKyAzeF4zICsgN3heMiDiiJIgeCDiiJIgMg0KZHkvZHggPSAxMCB4XjQgKzkgeF4yICsxNHggLSAxDQojIyBkKSB5ID0gNHheKDEvMikg4oiSICgxLzMpeF4yICsgMy8oeF4yKSArIDUveA0KZHkvZHggPSAtMngvMyArIDIvICh4XigxLzIpKSAtIDUvKHheMikgLSA2LyAoeF4zKQ0KIyMgZSkgeSA9IGxuICg0eF4z4oiSIHheMisgMykNCmR5L2R4ID0gKDEyeF4yIC0gMngpLyAoNHheMyAtIHheMiArIDMpDQoNCg0KIyAyKSBEaWZmZXJlbnRpYXRlIHkgd2l0aCByZXNwZWN0IHRvIHggdXNpbmcgaW1wbGljaXQgZGlmZmVyZW50aWF0aW9uDQoNCiMjIGYpIDPwnZGlXjIg4oiSIPCdkaZeMiA9IDE4DQo2eCAtIDJ5IChkeS9keCkgPSAwDQpkeS9keCA9IDN4L3kNCiANCiMjIGcpIDV5Lyh4KzEpID0gMjUNCls1KGR5L2R4KSAoeCsxKSAtIDV5XS8oeCsxKV4yID0gMA0KNShkeS9keCkvKHgrMSkgLSA1eS8oeCsxKV4yID0gMA0KZHkvZHggPSB5Lyh4KzEpDQoNCiMzKSBEaWZmZXJlbnRpYXRlIHkgd2l0aCByZXNwZWN0IHRvIHggdXNpbmcgY2hhaW4gcnVsZSBhbmQvb3IgdGhlIHF1b3RpZW50IHJ1bGUuDQoNCiMjIGgpIPCdkaYgPSAoMnheMyArIHgpXjQNCnUgPSAyeF4zICsgeA0KZHkvZHggPSB1XjQgPSA0ICg2eF4yICsgMSkgKDJ4XjMgKyB4KV4zDQoNCiMjIGkpIHkgPSB4XjMgKDJ4ICsgNSleNA0KdT0yeCs1DQpkeS9keD14XjMgdV40DQpkeS9keCA9IDN4XjIgKDJ4ICs1ICleNCArIDh4XjMgKDJ4KzUpXjMgPSB4XjIgKDJ4KzUpXjMgKDh4ICsgMygyeCs1KSkNCg0KIyMgaikg8J2RpiA9IDV4Lyh4KzEpDQpkeS9keCA9IFs1KHgrMSktNXhdLyh4KzEpXjIgPSA1Lyh4KzEpXjINCg0KIyMgaykgeV4yICsgMnkgPSB4DQoyeShkeS9keCkgKyAyKGR5L2R4KSA9IDENCmR5L2R4ID0gMSAvIDIoeSArIDEpDQoNCiMjIGwpIDEwMCA9IDV5L1t4XjMgKDJ4ICsgNSleNCBdICoNCjEwMFt4XjMgKDJ4ICsgNSleNCBdID0gNXkNCnU9KDJ4KzUpXjQNCjIwW3heMyAoMnggKyA1KV40IF0gPSB5DQpkeS9keCA9IDIwWzQoMnggKyA1KV4zIHheMyArIDN4XjIgKDJ4ICsgNSleNF0gDQoNCiMjIG0pIPCdkaYgPSAoc3FydCh4XjIgKyB4IC0gMSkpLyAoeF4yIC0xKSAqDQp1ID0geF4yIC0gMQ0Kc3FydCh1K3gpIC8gdSA9IFsoMS8yKSAodSt4KV4oLTEvMikgdSAtIGR1L2R4IHNxcnQoeF4yICsgeCAtIDEpXS91XjINCmR5L2R4ID0gLSAoMnheMyArIDN4XjIgLSAyeCArIDEpL1syKFheMiArIHggLTEpXigxLzIpICh4KzEpXjIgKHgtMSleMikNCg0KIyMgbikgeSA9IPCdkaUgLyAo8J2Rkl4oNHgpKSArIGxuICg0eF4yICkgKg0KZHkvZHggPSBbKPCdkZJeKDR4KSkgLSAgNCjwnZGSXig0eCkpIHhdLyAo8J2Rkl4oOHgpKSArIDIgKDQvNHgpID0gKDEtNHgpLyjwnZGSXig0eCkgKyAyL3gNCg0KIyA0KSBMZXTigJlzIGxvb2sgYXQgYSB1dGlsaXR5IGZ1bmN0aW9uIHRoYXQgc2F0aXNmaWVzIHRoZSBhc3N1bXB0aW9ucyB0aGF0IG1vcmUgaXMgYmV0dGVyIGFuZCB0aGF0IG1hcmdpbmFsIHV0aWxpdGllcyBhcmUgZGltaW5pc2hpbmcuIFN1cHBvc2UgYSBjb25zdW1lcuKAmXMgcHJlZmVyZW5jZSBiZXR3ZWVuIGZvb2QgYW5kIGNsb3RoaW5nIGNhbiBiZSByZXByZXNlbnRlZCBieSB0aGUgdXRpbGl0eSBmdW5jdGlvbiBVID0gc3FydCh4eSksIHdoZXJlIHggbWVhc3VyZXMgdGhlIG51bWJlciBvZiB1bml0cyBvZiBmb29kIGFuZCB5IHRoZSBudW1iZXIgb2YgdW5pdHMgb2YgQ2xvdGhpbmcuDQoNCiMjIGEpIFNob3cgdGhhdCBhIGNvbnN1bWVyIHdpdGggdGhpcyB1dGlsaXR5IGZ1bmN0aW9uIGJlbGlldmVzIHRoYXQgbW9yZSBpcyBiZXR0ZXIgZm9yIGVhY2ggZ29vZC4NCk1VeCA9IOKIgngv4oiCVSA9IHNxcnQoeSkNCk1VeSA9IOKIgnkv4oiCVSA9IHNxcnQoMC41eHleKC0wLjUpKQ0KTVV4IChNYXJnaW5hbCBVdGlsaXR5IG9mIEZvb2QpIHJlcHJlc2VudHMgdGhlIGV4dHJhIHV0aWxpdHkgZ2FpbmVkIGZyb20gY29uc3VtaW5nIG9uZSBtb3JlIHVuaXQgb2YgZm9vZCwgd2hpbGUga2VlcGluZyBjbG90aGluZyBjb25zdGFudC4gSXQgZGVwZW5kcyBvbiB0aGUgc3F1YXJlIHJvb3Qgb2YgdGhlIG51bWJlciBvZiBjbG90aGluZyB1bml0cywgbWVhbmluZyBhcyBjbG90aGluZyAoeSkgaW5jcmVhc2VzLCB0aGUgbWFyZ2luYWwgdXRpbGl0eSBvZiBmb29kIHJpc2VzIGJ1dCBhdCBhIGRlY3JlYXNpbmcgcmF0ZS4NCg0KTVV5IChNYXJnaW5hbCBVdGlsaXR5IG9mIENsb3RoaW5nKSByZXByZXNlbnRzIHRoZSBleHRyYSB1dGlsaXR5IGZyb20gY29uc3VtaW5nIG9uZSBtb3JlIHVuaXQgb2YgY2xvdGhpbmcsIHdoaWxlIGtlZXBpbmcgZm9vZCBjb25zdGFudC4gSXQgaXMgcHJvcG9ydGlvbmFsIHRvIHRoZSBzcXVhcmUgcm9vdCBvZiB0aGUgZm9vZCB1bml0cyAoeCksIG1lYW5pbmcgYXMgbW9yZSBjbG90aGluZyBpcyBjb25zdW1lZCwgaXRzIG1hcmdpbmFsIHV0aWxpdHkgZGVjcmVhc2VzLCBhbmQgaXQncyBhbHNvIGluZmx1ZW5jZWQgYnkgdGhlIGFtb3VudCBvZiBmb29kIGNvbnN1bWVkLg0KVG8gc2hvdyB0aGF0IGEgY29uc3VtZXIgYmVsaWV2ZXMgbW9yZSBpcyBiZXR0ZXIgZm9yIGVhY2ggZ29vZCwgd2UgbmVlZCB0byBjb25maXJtIHRoYXQgYm90aCBNVXggYW5kIE1VeSBhcmUgcG9zaXRpdmUuDQoNCk1VeCBpcyBhbHdheXMgcG9zaXRpdmUgc2luY2UgdGhlIHNxdWFyZSByb290IG9mIGEgcG9zaXRpdmUgbnVtYmVyIGlzIHBvc2l0aXZlLg0KTVV5IGlzIGFsc28gcG9zaXRpdmUgYXMgbG9uZyBhcyBib3RoIHggYW5kIHkgYXJlIHBvc2l0aXZlLg0KVGh1cywgbW9yZSBvZiBib3RoIGZvb2QgYW5kIGNsb3RoaW5nIGxlYWRzIHRvIGhpZ2hlciBtYXJnaW5hbCB1dGlsaXRpZXMsIGluZGljYXRpbmcgdGhhdCB0aGUgY29uc3VtZXIgYmVsaWV2ZXMgbW9yZSBpcyBiZXR0ZXIgZm9yIGVhY2ggZ29vZC4NCg0KIyMgYikgU2hvdyB0aGF0IHRoZSBtYXJnaW5hbCB1dGlsaXR5IG9mIGZvb2QgaXMgZGltaW5pc2hpbmcgYW5kIHRoYXQgdGhlIG1hcmdpbmFsIHV0aWxpdHkgb2YgY2xvdGhpbmcgaXMgZGltaW5pc2hpbmcuDQpUbyBzaG93IGRpbWluaXNoaW5nIG1hcmdpbmFsIHV0aWxpdHksIHdlIGNoZWNrIHRoZSBzZWNvbmQgZGVyaXZhdGl2ZXMgb2YgdGhlIHV0aWxpdHkgZnVuY3Rpb24gd2l0aCByZXNwZWN0IHRvIHggYW5kIHkuDQoNCuKIgl4yIFUgLyDiiIIgeF4yID0gMCBtZWFuaW5nIHRoZSBtYXJnaW5hbCB1dGlsaXR5IG9mIGZvb2QgaXMgY29uc3RhbnQsIG5vdCBkaW1pbmlzaGluZw0K4oiCXjIgVSAvIOKIgiB5XjIgPSAtMC4yNSB4eV4oLTEuNSksIHdoaWNoIGlzIG5lZ2F0aXZlIGZvciBwb3NpdGl2ZSB4IGFuZCB5LCBjb25maXJtaW5nIHRoYXQgdGhlIG1hcmdpbmFsIHV0aWxpdHkgb2YgY2xvdGhpbmcgaXMgZGltaW5pc2hpbmcgYXMgbW9yZSBjbG90aGluZyBpcyBjb25zdW1lZA0KDQpUaHVzLCB0aGUgbWFyZ2luYWwgdXRpbGl0eSBvZiBjbG90aGluZyBkaW1pbmlzaGVzLCB3aGlsZSB0aGUgbWFyZ2luYWwgdXRpbGl0eSBvZiBmb29kIHJlbWFpbnMgY29uc3RhbnQuDQo=