This is high level summary of weekly sales data for Fiscal week 2022-01-01- 2022-01-07
library(readr)
setwd("/Users/yasmeenkhalifa/Desktop/MSQM FALL 24/R PROGRAMMING/mydata")
retail_sales <- read_csv("Retail_sales.csv")
## Rows: 30000 Columns: 11
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): Store ID, Product ID, Store Location, Product Category, Day of the...
## dbl (4): Units Sold, Sales Revenue (USD), Discount Percentage, Marketing Sp...
## lgl (1): Holiday Effect
## date (1): Date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
retail_sales
## # A tibble: 30,000 × 11
## `Store ID` `Product ID` Date `Units Sold` `Sales Revenue (USD)`
## <chr> <chr> <date> <dbl> <dbl>
## 1 Spearsland 52372247 2022-01-01 9 2742.
## 2 Spearsland 52372247 2022-01-02 7 2666.
## 3 Spearsland 52372247 2022-01-03 1 381.
## 4 Spearsland 52372247 2022-01-04 4 1523.
## 5 Spearsland 52372247 2022-01-05 2 762.
## 6 Spearsland 52372247 2022-01-06 8 3046.
## 7 Spearsland 52372247 2022-01-07 6 2285.
## 8 Spearsland 52372247 2022-01-08 9 3427.
## 9 Spearsland 52372247 2022-01-09 7 2666.
## 10 Spearsland 52372247 2022-01-10 1 381.
## # ℹ 29,990 more rows
## # ℹ 6 more variables: `Discount Percentage` <dbl>,
## # `Marketing Spend (USD)` <dbl>, `Store Location` <chr>,
## # `Product Category` <chr>, `Day of the Week` <chr>, `Holiday Effect` <lgl>
mean(retail_sales$`Sales Revenue (USD)`, Date=(2022-01-01 - 2022-01-07))
## [1] 2749.51
median(retail_sales$`Sales Revenue (USD)`, Date=(2022-01-01 - 2022-01-07))
## [1] 1902.42
range(retail_sales$`Sales Revenue (USD)`, Date=(2022-01-01 - 2022-01-07))
## [1] -10.00 27165.88