Importar Base de Datos

# file.choose()
df <- read.csv("/Users/adrianelizondo/Desktop/rentadebicis.csv")
summary(df)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0
regresion <- lm(rentas_totales ~ estacion + dia_de_la_semana + asueto + temperatura + sensacion_termica + humedad + velocidad_del_viento, data =df)

Modelo Ajustado

regresion <- lm(rentas_totales ~ estacion + sensacion_termica + humedad + velocidad_del_viento, data = df)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ estacion + sensacion_termica + 
##     humedad + velocidad_del_viento, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -323.84 -102.14  -32.15   66.63  671.50 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          134.76923    8.17509  16.485  < 2e-16 ***
## estacion              22.60282    1.42319  15.882  < 2e-16 ***
## sensacion_termica      7.29949    0.18391  39.690  < 2e-16 ***
## humedad               -2.97488    0.08336 -35.687  < 2e-16 ***
## velocidad_del_viento   0.90497    0.19408   4.663 3.16e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 155.8 on 10881 degrees of freedom
## Multiple R-squared:  0.2603, Adjusted R-squared:   0.26 
## F-statistic: 957.3 on 4 and 10881 DF,  p-value: < 2.2e-16

Elaborar Predicción

datos <- data.frame(estacion=1, sensacion_termica=24, humedad=62, velocidad_del_viento=13)
predict(regresion,datos)
##        1 
## 159.8819