# Create dataframe that only contains Left Midfielders and Left Forwards:
library(plotly)
library(GGally)
playerdata = read.csv("C:/Users/gerde/Downloads/FIFA Players.csv")
LMvLF = playerdata %>% filter(Position %in% c("LF", "LM"))
ggpairs(LMvLF,columns = c("Acceleration","Agility"),mapping = ggplot2::aes(color = Position))
# Based on the visuals a positive correlation between agility and acceleration is present.
lmagi = LMvLF %>% filter(Position == "LM") %>% select("ID","Position","Agility")
lfagi = LMvLF %>% filter(Position == "LF") %>% select("ID","Position","Agility")
head(lmagi)
## ID Position Agility
## 1 188567 LM 76
## 2 208722 LM 91
## 3 190483 LM 93
## 4 188350 LM 86
## 5 193747 LM 74
## 6 184267 LM 92
head(lfagi)
## ID Position Agility
## 1 183277 LF 95
## 2 211110 LF 91
## 3 41 LF 79
## 4 198164 LF 89
## 5 190577 LF 87
## 6 204713 LF 84
t.test(lmagi$Agility, lfagi$Agility, alternative = "two.sided", var.equal = TRUE)
##
## Two Sample t-test
##
## data: lmagi$Agility and lfagi$Agility
## t = -1.8109, df = 1108, p-value = 0.07043
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.0741435 0.3636412
## sample estimates:
## mean of x mean of y
## 75.37808 79.73333
lmagi %>% ggplot(aes(x=Agility)) + geom_histogram(fill = "blue" ,color = "black") + labs(title = "Left Midfielder Agility Scores")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
lfagi %>% ggplot(aes(x=Agility)) + geom_histogram(fill = "blue" ,color = "black") + labs(title = "Left Forward Agility Scores")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
playerdata = read.csv("C:/Users/gerde/Downloads/FIFA Players.csv")
playerstats = playerdata %>% select("ID","Name","Age","Position","Jersey.Number","Height","Weight","Aggression","Acceleration","SprintSpeed","Agility","ShotPower")
Aggression.Level = cut(playerstats$Aggression, breaks = c(1,33,66,100), labels = c("Low","Medium","High"))
ps = playerstats %>% mutate(Aggression.Level = Aggression.Level)
ps$Weight = as.numeric(gsub("lbs","",ps$Weight))
ggpairs(ps,columns = c("Acceleration","ShotPower","Weight"),mapping = ggplot2::aes(color = Aggression.Level), title = "Acceleration v. ShotPower v. Weight by Aggression Level")
## Warning: Removed 48 rows containing non-finite outside the scale range
## (`stat_density()`).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 48 rows containing missing values
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 48 rows containing missing values
## Warning: Removed 48 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 48 rows containing non-finite outside the scale range
## (`stat_density()`).
## Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
## Removed 48 rows containing missing values
## Warning: Removed 48 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Removed 48 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 48 rows containing non-finite outside the scale range
## (`stat_density()`).
ggplot(data = ps, aes(x= Aggression, y = Age,color = Aggression.Level)) + geom_jitter()
## Warning: Removed 48 rows containing missing values or values outside the scale range
## (`geom_point()`).
ggplot(data = ps, aes(x = Age, fill = Aggression.Level, title = "Number of players by Age and Aggression Level")) + geom_histogram(color = "black")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data = ps, aes(x = Age, fill = Aggression.Level)) + geom_histogram(color = "black") + facet_wrap(~Position)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
filtered_ps = ps[ps$Position == "" | is.na(ps$Position), ]
# Print the filtered data frame to show who has no data for column "Position"
print(filtered_ps)
## ID Name Age Position Jersey.Number Height Weight
## 5019 153160 R. Raldes 37 NA 5'11 172
## 6737 175393 J. Arce 33 NA 5'9 154
## 7923 195905 L. Gutiérrez 33 NA 5'11 190
## 9906 226044 R. Vargas 23 NA 5'7 143
## 10629 216751 D. Bejarano 26 NA 5'9 154
## 13237 177971 J. McNulty 33 NA NA
## 13238 195380 J. Barrera 29 NA NA
## 13239 139317 J. Stead 35 NA NA
## 13240 240437 A. Semprini 20 NA NA
## 13241 209462 R. Bingham 24 NA NA
## 13242 219702 K. Dankowski 21 NA NA
## 13243 225590 I. Colman 23 NA NA
## 13244 233782 M. Feeney 19 NA NA
## 13245 239158 R. Minor 30 NA NA
## 13246 242998 Klauss 21 NA NA
## 13247 244022 I. Sissoko 22 NA NA
## 13248 189238 F. Hart 28 NA NA
## 13249 211511 L. McCullough 24 NA NA
## 13250 224055 Li Yunqiu 27 NA NA
## 13251 244535 F. Garcia 29 NA NA
## 13252 134968 R. Haemhouts 34 NA NA
## 13253 225336 E. Binaku 22 NA NA
## 13254 171320 G. Miller 31 NA NA
## 13255 246328 A. Aidonis 17 NA NA
## 13256 196921 L. Sowah 25 NA NA
## 13257 202809 R. Deacon 26 NA NA
## 13258 226617 Jang Hyun Soo 25 NA NA
## 13259 230713 A. Al Malki 23 NA NA
## 13260 234809 E. Guerrero 27 NA NA
## 13261 246073 Hernáiz 20 NA NA
## 13262 221498 H. Al Mansour 25 NA NA
## 13263 244026 H. Paul 24 NA NA
## 13264 244538 S. Bauer 25 NA NA
## 13265 201019 M. Chergui 29 NA NA
## 13266 221499 D. Gardner 28 NA NA
## 13267 237371 L. Bengtsson 20 NA NA
## 13268 242491 F. Jaramillo 22 NA NA
## 13269 153148 L. Gargu_a 37 NA NA
## 13270 244540 S. Rivera 26 NA NA
## 13271 245564 Vinicius 19 NA NA
## 13272 213821 F. Sepúlveda 26 NA NA
## 13273 240701 L. Spence 22 NA NA
## 13274 242237 B. Lepistu 25 NA NA
## 13275 244029 A. Abruscia 27 NA NA
## 13276 244541 E. González 23 NA NA
## 13277 211006 M. Al Amri 26 NA NA
## 13278 215102 J. Rebolledo 26 NA NA
## 13279 246078 C. Mamengi 17 NA NA
## 13280 239679 P. Mazzocchi 22 NA NA
## 13281 244543 Y. Ammour 19 NA NA
## 13282 212800 Jwa Joon Hyeop 27 NA NA
## 13283 231232 O. Marrufo 25 NA NA
## 13284 232256 Han Pengfei 25 NA NA
## 16451 193911 S. Paul 31 NA 6'1 172
## 16540 245167 L. Lalruatthara 23 NA 5'11 143
## 16794 228192 E. Lyngdoh 31 NA 5'9 150
## 17130 228198 J. Singh 26 NA 5'7 159
## 17340 233526 S. Passi 23 NA 5'9 143
## 17437 236452 D. Lalhlimpuia 20 NA 6'0 168
## 17540 234508 C. Singh 21 NA 6'3 174
## Aggression Acceleration SprintSpeed Agility ShotPower Aggression.Level
## 5019 74 47 46 59 74 High
## 6737 48 71 74 73 61 Medium
## 7923 76 64 61 68 51 High
## 9906 26 71 73 79 62 Low
## 10629 57 68 61 54 24 Medium
## 13237 NA NA NA NA NA <NA>
## 13238 NA NA NA NA NA <NA>
## 13239 NA NA NA NA NA <NA>
## 13240 NA NA NA NA NA <NA>
## 13241 NA NA NA NA NA <NA>
## 13242 NA NA NA NA NA <NA>
## 13243 NA NA NA NA NA <NA>
## 13244 NA NA NA NA NA <NA>
## 13245 NA NA NA NA NA <NA>
## 13246 NA NA NA NA NA <NA>
## 13247 NA NA NA NA NA <NA>
## 13248 NA NA NA NA NA <NA>
## 13249 NA NA NA NA NA <NA>
## 13250 NA NA NA NA NA <NA>
## 13251 NA NA NA NA NA <NA>
## 13252 NA NA NA NA NA <NA>
## 13253 NA NA NA NA NA <NA>
## 13254 NA NA NA NA NA <NA>
## 13255 NA NA NA NA NA <NA>
## 13256 NA NA NA NA NA <NA>
## 13257 NA NA NA NA NA <NA>
## 13258 NA NA NA NA NA <NA>
## 13259 NA NA NA NA NA <NA>
## 13260 NA NA NA NA NA <NA>
## 13261 NA NA NA NA NA <NA>
## 13262 NA NA NA NA NA <NA>
## 13263 NA NA NA NA NA <NA>
## 13264 NA NA NA NA NA <NA>
## 13265 NA NA NA NA NA <NA>
## 13266 NA NA NA NA NA <NA>
## 13267 NA NA NA NA NA <NA>
## 13268 NA NA NA NA NA <NA>
## 13269 NA NA NA NA NA <NA>
## 13270 NA NA NA NA NA <NA>
## 13271 NA NA NA NA NA <NA>
## 13272 NA NA NA NA NA <NA>
## 13273 NA NA NA NA NA <NA>
## 13274 NA NA NA NA NA <NA>
## 13275 NA NA NA NA NA <NA>
## 13276 NA NA NA NA NA <NA>
## 13277 NA NA NA NA NA <NA>
## 13278 NA NA NA NA NA <NA>
## 13279 NA NA NA NA NA <NA>
## 13280 NA NA NA NA NA <NA>
## 13281 NA NA NA NA NA <NA>
## 13282 NA NA NA NA NA <NA>
## 13283 NA NA NA NA NA <NA>
## 13284 NA NA NA NA NA <NA>
## 16451 28 56 46 65 13 Low
## 16540 52 78 82 70 24 Medium
## 16794 33 67 66 81 63 Low
## 17130 32 86 82 77 68 Low
## 17340 39 66 68 57 50 Medium
## 17437 33 53 58 59 51 Low
## 17540 44 71 73 62 31 Medium