Linear mixed model in JAGS for random intercept

library(R2jags)
## Loading required package: rjags
## Loading required package: coda
## Linked to JAGS 4.3.1
## Loaded modules: basemod,bugs
## 
## Attaching package: 'R2jags'
## The following object is masked from 'package:coda':
## 
##     traceplot
# create dataset
library(nlme)
  snakes3=Orthodont
  snakes3$bw = rep(c(1:27),each=4) 
  names(snakes3)=c( "b_mass" ,"b_length","site"  ,"sex","bw" )

  snakes3=snakes3[sample(nrow(snakes3)*0.8  ), ]
  head(snakes3)
##    b_mass b_length site    sex bw
## 37   27.5        8  M10   Male 10
## 48   28.0       14  M12   Male 12
## 27   24.5       12  M07   Male  7
## 12   27.5       14  M03   Male  3
## 74   24.0       10  F03 Female 19
## 59   26.0       12  M15   Male 15
  table(snakes3$site)
## 
## M16 M05 M02 M11 M07 M08 M03 M12 M13 M14 M09 M15 M06 M04 M01 M10 F10 F09 F06 F01 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   0   0   2   4 
## F05 F07 F02 F08 F03 F04 F11 
##   4   0   4   0   4   4   0
  nrow(snakes3)
## [1] 86
  plot(b_mass ~ b_length, col = site, data = snakes3)

  # snakes3 <- within(snakes3, sex <- relevel(sex, ref = "Female"))
  
  summary(lme(b_mass ~ b_length +  (sex), data = snakes3, random = ~ 1|site))
## Linear mixed-effects model fit by REML
##   Data: snakes3 
##        AIC      BIC    logLik
##   360.7635 372.8577 -175.3817
## 
## Random effects:
##  Formula: ~1 | site
##         (Intercept) Residual
## StdDev:     1.52578  1.52631
## 
## Fixed effects:  b_mass ~ b_length + (sex) 
##                 Value Std.Error DF   t-value p-value
## (Intercept) 16.918734 0.9199308 63 18.391311  0.0000
## b_length     0.731820 0.0740991 63  9.876227  0.0000
## sexFemale   -2.009645 0.8253985 20 -2.434758  0.0244
##  Correlation: 
##           (Intr) b_lngt
## b_length  -0.886       
## sexFemale -0.262  0.026
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -3.40584199 -0.58577184 -0.03230801  0.54900703  3.39016809 
## 
## Number of Observations: 86
## Number of Groups: 22
  # summary(lme(b_mass ~ b_length  , data = snakes3, random = ~ 1|site))
  Nsites <- length(levels(as.factor(snakes3$site)))
  jagsdata_s3 <- with(snakes3, list(b_mass = b_mass, b_length = b_length, site = site, sex=sex,
                                    N = length(b_mass), Nsites = Nsites))
  
  # The JAGS model
    lm3_jags <- function(){
      # Likelihood:
      for (i in 1:N){
        b_mass[i] ~ dnorm(mu[i], tau) # tau is precision (1 / variance)
        mu[i] <- alpha + a[site[i]] + beta * b_length[i]+ gama*sex[i] # Random intercept for site
      }
      # Priors:
      alpha ~ dnorm(0, 0.01) # intercept
      
      sigma_a ~ dunif(0, 100) # standard deviation of random effect (variance between sites)
      tau_a <- 1 / (sigma_a * sigma_a) # convert to precision
      for (j in 1:Nsites){
        a[j] ~ dnorm(0, tau_a) # random intercept for each site
      }
      
      beta ~ dnorm(0, 0.01) # slope
      gama ~ dnorm(0, 0.01) # slope
      
      sigma ~ dunif(0, 100) # standard deviation of fixed effect (variance within sites)
      tau <- 1 / (sigma * sigma) # convert to precision
    }
  
    init_values <- function(){
      list(alpha = rnorm(1), sigma_a = runif(1), beta = rnorm(1), sigma = runif(1),gama=   rnorm(1) )
    }
    
    params <- c("alpha", "beta", "sigma", "sigma_a", "gama")
    
    fit_lm3 <- jags(data = jagsdata_s3, inits = init_values, parameters.to.save = params, model.file = lm3_jags,
                    n.chains = 3, n.iter = 20000, n.burnin = 5000, n.thin = 10, DIC = F)
## module glm loaded
## module dic loaded
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 86
##    Unobserved stochastic nodes: 32
##    Total graph size: 478
## 
## Initializing model
    fit_lm3
## Inference for Bugs model at "C:/Users/hed2/AppData/Local/Temp/RtmpYBOBop/model39446ec37b3f", fit using jags,
##  3 chains, each with 20000 iterations (first 5000 discarded), n.thin = 10
##  n.sims = 4500 iterations saved
##         mu.vect sd.vect   2.5%    25%    50%    75%  97.5%  Rhat n.eff
## alpha    18.455   1.460 15.570 17.499 18.484 19.429 21.276 1.002  2000
## beta      0.746   0.076  0.595  0.695  0.746  0.796  0.898 1.001  3100
## gama     -1.781   0.886 -3.489 -2.367 -1.787 -1.216 -0.021 1.001  3000
## sigma     1.561   0.147  1.311  1.459  1.550  1.651  1.883 1.001  4500
## sigma_a   1.626   0.350  1.052  1.383  1.590  1.825  2.411 1.001  2800
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

Linear mixed model in JAGS for random slope

we suppose they are independent of random intercept and slope

   (lme(b_mass ~ b_length +  (sex), data = snakes3, random = ~ 1+sex|site))
## Linear mixed-effects model fit by REML
##   Data: snakes3 
##   Log-restricted-likelihood: -174.9241
##   Fixed: b_mass ~ b_length + (sex) 
## (Intercept)    b_length   sexFemale 
##   16.896158    0.733872   -1.990918 
## 
## Random effects:
##  Formula: ~1 + sex | site
##  Structure: General positive-definite, Log-Cholesky parametrization
##             StdDev   Corr  
## (Intercept) 1.662072 (Intr)
## sexFemale   1.705354 -0.827
## Residual    1.526174       
## 
## Number of Observations: 86
## Number of Groups: 22
    # summary(lme(b_mass ~ b_length  , data = snakes3, random = ~ 1|site))
    
    Nsites <- length(levels(as.factor(snakes3$site)))
    jagsdata_s3 <- with(snakes3, list(b_mass = b_mass, b_length = b_length, site = site, sex=sex,
                                      N = length(b_mass), Nsites = Nsites))
    
    # The JAGS model  
    
    lm3_jags <- function(){
      # Likelihood:
      for (i in 1:N){
        b_mass[i] ~ dnorm(mu[i], tau) # tau is precision (1 / variance)
        mu[i] <- (alpha + a[site[i]] )+ beta * b_length[i]+ (gama+g[site[i]]) *sex[i] # Random intercept for site
      }
      # Priors:
      alpha ~ dnorm(0, 0.01) # intercept
      
      
      sigma_a ~ dunif(0, 100) # standard deviation of random effect (variance between sites)
      tau_a <- 1 / (sigma_a * sigma_a) # convert to precision
      for (j in 1:Nsites){
        a[j] ~ dnorm(0, tau_a) # random intercept for each site
      }
      sigma_g ~ dunif(0, 100) # standard deviation of random effect (variance between sites)
      tau_g <- 1 / (sigma_g * sigma_g) # convert to precision
      for (j in 1:Nsites){
        g[j] ~ dnorm(0, tau_g) # random intercept for each site
      }
      
      beta ~ dnorm(0, 0.01) # slope
      gama ~ dnorm(0, 0.01) # slope
      
      sigma ~ dunif(0, 100) # standard deviation of fixed effect (variance within sites)
      tau <- 1 / (sigma * sigma) # convert to precision
    }
    
    init_values <- function(){
      list(alpha = rnorm(1), sigma_a = runif(1), sigma_g = runif(1),beta = rnorm(1), sigma = runif(1),gama=   rnorm(1) )
    }
    
    params <- c("alpha", "beta", "sigma", "sigma_a","sigma_g", "gama")
    
    fit_lm34 <- jags(data = jagsdata_s3, inits = init_values, parameters.to.save = params, model.file = lm3_jags,
                    n.chains = 3, n.iter = 20000, n.burnin = 5000, n.thin = 10, DIC = F)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 86
##    Unobserved stochastic nodes: 60
##    Total graph size: 572
## 
## Initializing model
    fit_lm34
## Inference for Bugs model at "C:/Users/hed2/AppData/Local/Temp/RtmpYBOBop/model39443b7d1b3c", fit using jags,
##  3 chains, each with 20000 iterations (first 5000 discarded), n.thin = 10
##  n.sims = 4500 iterations saved
##         mu.vect sd.vect   2.5%    25%    50%    75%  97.5%  Rhat n.eff
## alpha    18.400   1.581 15.234 17.365 18.425 19.467 21.398 1.001  4500
## beta      0.745   0.075  0.597  0.696  0.744  0.794  0.891 1.001  4500
## gama     -1.701   1.069 -3.685 -2.403 -1.746 -1.044  0.510 1.001  4500
## sigma     1.563   0.146  1.309  1.461  1.554  1.654  1.881 1.001  4500
## sigma_a   1.330   0.572  0.056  1.031  1.386  1.690  2.417 1.038   200
## sigma_g   0.718   0.509  0.044  0.297  0.618  1.062  1.824 1.011   290
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

The results are a little different

we suppose they are not independent of random intercept and slope

    Nsites <- length(levels(as.factor(snakes3$site)))
    jagsdata_s3 <- with(snakes3, list(b_mass = b_mass, b_length = b_length, site = site, sex=sex,
                                      N = length(b_mass), Nsites = Nsites))
    
    # The JAGS model  
    
    lm3_jags <- function(){
      # Likelihood:
      for (i in 1:N){
        
        b_mass[i] ~ dnorm(mu[i], tau) # tau is precision (1 / variance)
        
        mu[i] <- (alpha + a[site[i]] )+ beta * b_length[i]+ (gama+g[site[i]]) *sex[i] # Random intercept for site
      }
      # Priors:
      alpha ~ dnorm(0, 0.01) # intercept
      
      
 for (j in 1:Nsites){
       ## random effects 
## mean is 0
b0[j,1] = 0   
b0[j,2] = 0
b[j,1:2] ~ dmnorm(b0[j,1:2],ISigma[,]) ## MV normal

 a[j] =b[j,1] 
 g[j]=b[j,2] 
 }

      #(3) Variance-covariance matrix
ISigma[1:2,1:2] ~dwish(R[,],3)
Sigma[1:2,1:2] = inverse(ISigma[,])
R[1,1] =1
R[1,2] =0
R[2,2] =1
R[2,1] =0

      beta ~ dnorm(0, 0.01) # slope
      gama ~ dnorm(0, 0.01) # slope
      
      sigma ~ dunif(0, 100) # standard deviation of fixed effect (variance within sites)
      tau <- 1 / (sigma * sigma) # convert to precision
    }
    
    init_values <- function(){
      list(alpha = rnorm(1), sigma_a = runif(1), sigma_g = runif(1),beta = rnorm(1), sigma = runif(1),gama=   rnorm(1) )
    }
    
    params <- c("alpha", "beta", "sigma", "Sigma", "gama")
    
    fit_lm35 <- jags(data = jagsdata_s3, inits = init_values, parameters.to.save = params, model.file = lm3_jags,
                    n.chains = 3, n.iter = 20000, n.burnin = 5000, n.thin = 10, DIC = F)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 86
##    Unobserved stochastic nodes: 32
##    Total graph size: 624
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_a" in chain 1
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_g" in chain 1
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_a" in chain 2
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_g" in chain 2
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_a" in chain 3
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_g" in chain 3
## Initializing model
    fit_lm35
## Inference for Bugs model at "C:/Users/hed2/AppData/Local/Temp/RtmpYBOBop/model3944234e60d0", fit using jags,
##  3 chains, each with 20000 iterations (first 5000 discarded), n.thin = 10
##  n.sims = 4500 iterations saved
##            mu.vect sd.vect   2.5%    25%    50%    75%  97.5%  Rhat n.eff
## Sigma[1,1]   2.054   2.802  0.193  0.625  1.199  2.343  9.511 1.002  2000
## Sigma[2,1]  -0.361   1.695 -4.439 -0.372  0.080  0.286  0.722 1.002  3000
## Sigma[1,2]  -0.361   1.695 -4.439 -0.372  0.080  0.286  0.722 1.002  3000
## Sigma[2,2]   0.854   1.133  0.135  0.326  0.557  0.994  3.358 1.001  4300
## alpha       18.547   1.483 15.534 17.552 18.578 19.519 21.408 1.001  4500
## beta         0.743   0.076  0.594  0.692  0.744  0.792  0.893 1.001  4500
## gama        -1.806   0.973 -3.687 -2.441 -1.823 -1.193  0.195 1.001  4500
## sigma        1.573   0.147  1.322  1.466  1.564  1.664  1.891 1.001  4500
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

similar results for the above scenarios

Join model for missing data

    Nsites <- length(levels(as.factor(snakes3$site)))
    jagsdata_s3 <- with(snakes3, list(b_mass = b_mass, b_length = b_length, site = site, sex=sex,
                                      N = length(b_mass), Nsites = Nsites,bw=bw))
    
    # The JAGS model  
    
    lm3_jags <- function(){
      # Likelihood:
      for (i in 1:N){
        
        b_mass[i] ~ dnorm(mu[i], tau) # tau is precision (1 / variance)
        
        mu[i] <- (alpha + a[site[i]] )+ beta * b_length[i]+ (gama+g[site[i]]) *sex[i] # Random intercept for site
        
        ## linear regression model 
bw[i] ~ dnorm(m[i],1)
m[i] = bb[1] + bb[2]*a[site[i]] + bb[3]*g[site[i]]
      }
      
      # Priors:
      alpha ~ dnorm(0, 0.01) # intercept
        
      #(1) Coefficients
for (ll in 1:3) { bb[ll] ~ dnorm(0, .01) }
      
 for (j in 1:Nsites){
       ## random effects 
## mean is 0
b0[j,1] = 0   
b0[j,2] = 0
b[j,1:2] ~ dmnorm(b0[j,1:2],ISigma[,]) ## MV normal

 a[j] =b[j,1] 
 g[j]=b[j,2] 
 }

      #(3) Variance-covariance matrix
ISigma[1:2,1:2] ~dwish(R[,],3)
Sigma[1:2,1:2] = inverse(ISigma[,])
R[1,1] =1
R[1,2] =0
R[2,2] =1
R[2,1] =0

      beta ~ dnorm(0, 0.01) # slope
      gama ~ dnorm(0, 0.01) # slope
      
      sigma ~ dunif(0, 100) # standard deviation of fixed effect (variance within sites)
      tau <- 1 / (sigma * sigma) # convert to precision
    }
    
    init_values <- function(){
      list(alpha = rnorm(1), sigma_a = runif(1), sigma_g = runif(1),beta = rnorm(1), sigma = runif(1),gama=   rnorm(1) ,bb= rnorm(3))
    }
    
    params <- c("alpha", "beta", "sigma", "Sigma", "gama","bb","a","g")
    
    fit_lm35 <- jags(data = jagsdata_s3, inits = init_values, parameters.to.save = params, model.file = lm3_jags,
                    n.chains = 3, n.iter = 20000, n.burnin = 5000, n.thin = 10, DIC = F)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 172
##    Unobserved stochastic nodes: 35
##    Total graph size: 779
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_a" in chain 1
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_g" in chain 1
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_a" in chain 2
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_g" in chain 2
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_a" in chain 3
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains =
## n.chains, : Unused initial value for "sigma_g" in chain 3
## Initializing model
    fit_lm35
## Inference for Bugs model at "C:/Users/hed2/AppData/Local/Temp/RtmpYBOBop/model3944117f7deb", fit using jags,
##  3 chains, each with 20000 iterations (first 5000 discarded), n.thin = 10
##  n.sims = 4500 iterations saved
##            mu.vect sd.vect    2.5%    25%    50%    75%  97.5%  Rhat n.eff
## Sigma[1,1]   1.902   3.051   0.248  0.600  0.994  1.771 11.361 1.178    20
## Sigma[2,1]  -0.250   1.699  -5.721 -0.094  0.172  0.366  0.896 1.353    22
## Sigma[1,2]  -0.250   1.699  -5.721 -0.094  0.172  0.366  0.896 1.353    22
## Sigma[2,2]   0.895   1.007   0.170  0.363  0.571  0.995  3.726 1.063    42
## a[1]        -1.023   0.958  -3.833 -1.311 -0.852 -0.494  0.309 1.286    15
## a[2]        -0.652   0.997  -2.990 -1.206 -0.511  0.026  0.956 1.497     8
## a[3]        -0.359   1.072  -2.705 -1.051 -0.174  0.388  1.370 1.888     5
## a[4]        -0.549   0.720  -2.397 -0.844 -0.423 -0.117  0.485 1.125    41
## a[5]        -0.354   0.792  -2.143 -0.748 -0.271  0.157  0.941 1.305    11
## a[6]        -0.330   0.746  -2.070 -0.700 -0.236  0.139  0.846 1.196    16
## a[7]         0.014   0.934  -1.959 -0.607  0.147  0.623  1.644 1.807     6
## a[8]        -0.288   0.659  -1.788 -0.575 -0.222  0.068  0.832 1.082   130
## a[9]        -0.323   0.675  -2.049 -0.607 -0.259  0.030  0.891 1.119    42
## a[10]       -0.039   0.654  -1.283 -0.394 -0.072  0.299  1.319 1.187    18
## a[11]        0.243   0.647  -0.964 -0.094  0.210  0.542  1.693 1.101    51
## a[12]        0.404   0.794  -0.911 -0.104  0.310  0.805  2.242 1.321    10
## a[13]        0.964   0.894  -0.392  0.458  0.836  1.267  3.484 1.283    14
## a[14]        1.157   1.038  -0.469  0.584  1.017  1.512  4.111 1.388    10
## a[15]        1.819   1.438  -0.360  1.051  1.593  2.208  6.212 1.462     9
## a[16]        2.349   1.676  -0.192  1.366  2.026  2.922  7.214 1.251    16
## a[17]        0.038   1.348  -2.547 -0.657  0.025  0.680  2.871 1.051  4500
## a[18]       -0.021   1.408  -2.727 -0.694 -0.018  0.644  2.753 1.068  4500
## a[19]       -0.917   1.373  -4.109 -1.470 -0.924 -0.265  1.510 1.468     8
## a[20]       -1.048   1.112  -3.796 -1.423 -0.912 -0.494  0.580 1.133    69
## a[21]       -0.697   1.272  -3.516 -1.224 -0.739 -0.081  1.645 1.459     9
## a[22]       -0.013   1.372  -2.753 -0.667 -0.013  0.662  2.638 1.059  2900
## a[23]       -0.426   1.027  -2.503 -0.864 -0.449  0.057  1.443 1.220    19
## a[24]       -0.010   1.396  -2.746 -0.667 -0.012  0.676  2.748 1.062  2000
## a[25]       -0.157   1.164  -2.044 -0.719 -0.290  0.413  2.084 1.347    11
## a[26]        0.269   1.338  -1.744 -0.520  0.073  0.966  3.211 1.467     8
## a[27]       -0.034   1.339  -2.689 -0.687  0.012  0.644  2.473 1.065  3200
## alpha       17.899   1.954  13.969 16.629 17.926 19.218 21.694 1.106    24
## bb[1]       11.267   1.487   8.343 10.303 11.271 12.235 14.115 1.004   590
## bb[2]       -3.166   6.909 -14.473 -8.617 -4.712  2.863  9.321 2.204     5
## bb[3]        1.729  10.079 -17.134 -8.334  5.366  9.511 16.188 3.853     3
## beta         0.743   0.076   0.596  0.691  0.744  0.794  0.892 1.003  1000
## g[1]        -0.308   0.799  -1.629 -0.727 -0.402 -0.063  2.039 1.361    11
## g[2]        -0.544   0.826  -2.097 -1.075 -0.623  0.080  1.027 1.834     6
## g[3]        -0.531   0.942  -2.213 -1.159 -0.696  0.256  1.236 2.470     4
## g[4]        -0.263   0.539  -1.367 -0.542 -0.236  0.013  0.897 1.126    29
## g[5]        -0.331   0.597  -1.549 -0.713 -0.349  0.109  0.731 1.594     7
## g[6]        -0.268   0.548  -1.420 -0.596 -0.269  0.107  0.702 1.373     9
## g[7]        -0.294   0.791  -1.771 -0.844 -0.402  0.363  1.160 2.344     4
## g[8]        -0.112   0.460  -1.062 -0.344 -0.112  0.106  0.838 1.064    82
## g[9]        -0.087   0.475  -1.006 -0.338 -0.106  0.146  1.024 1.115    29
## g[10]        0.086   0.473  -0.748 -0.221  0.051  0.349  1.121 1.264    12
## g[11]        0.040   0.473  -0.954 -0.220  0.065  0.311  0.931 1.139    21
## g[12]        0.344   0.610  -0.738 -0.081  0.336  0.706  1.629 1.518     7
## g[13]        0.275   0.786  -1.874 -0.024  0.364  0.692  1.707 1.395    10
## g[14]        0.301   0.935  -2.288 -0.034  0.432  0.825  1.840 1.517     8
## g[15]        0.492   1.342  -3.505  0.097  0.722  1.225  2.567 1.540     8
## g[16]        1.092   1.520  -3.253  0.622  1.242  1.860  3.711 1.259    16
## g[17]        0.007   0.927  -1.878 -0.518  0.001  0.527  1.878 1.010  4500
## g[18]       -0.009   0.951  -1.963 -0.517  0.000  0.506  1.855 1.016  2600
## g[19]       -0.106   1.061  -1.893 -0.852 -0.145  0.480  2.415 1.840     6
## g[20]       -0.336   0.837  -1.821 -0.794 -0.404  0.027  1.760 1.354    11
## g[21]       -0.030   0.963  -1.680 -0.715 -0.017  0.523  2.169 1.889     5
## g[22]       -0.004   0.945  -1.928 -0.524  0.009  0.517  1.892 1.016  4500
## g[23]       -0.012   0.752  -1.349 -0.529 -0.038  0.445  1.547 1.657     6
## g[24]       -0.027   0.969  -1.919 -0.536 -0.019  0.506  1.904 1.017  3600
## g[25]        0.148   0.815  -1.282 -0.461  0.196  0.677  1.654 1.866     5
## g[26]        0.373   0.900  -1.329 -0.316  0.498  0.979  1.994 2.058     5
## g[27]        0.020   0.941  -1.852 -0.486  0.015  0.527  1.918 1.010  1500
## gama        -1.302   1.523  -4.154 -2.380 -1.313 -0.277  1.806 1.217    13
## sigma        1.586   0.152   1.319  1.483  1.577  1.680  1.921 1.002  1700
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
table(snakes3$site)
## 
## M16 M05 M02 M11 M07 M08 M03 M12 M13 M14 M09 M15 M06 M04 M01 M10 F10 F09 F06 F01 
##   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   0   0   2   4 
## F05 F07 F02 F08 F03 F04 F11 
##   4   0   4   0   4   4   0