Name : Mst Nigar Sultana
n = 5 # Number of coin flips
p = 0.5 # Probability of heads
i_vals = 0:5 # Possible values for number of heads (0 to 5)
theoretical_prob = dbinom(i_vals, size = n, prob = p)
set.seed(123) # Set seed for reproducibility
n_trials = 1000 # Number of trials
results = replicate(n_trials, sum(sample(c(0, 1), n, replace = TRUE)))
outcomes <- table(factor(results, levels = 0:5))
# Empirical probabilities (frequency / total trials)
empirical_prob = outcomes / n_trials
# Comparison between theoretical and empirical probabilities
comparison = data.frame(
Heads = i_vals,
Theoretical = theoretical_prob,
Empirical = as.numeric(empirical_prob)
)
print(comparison)
library(ggplot2)
comparison = data.frame(
Heads = factor(i_vals), # Treat Heads as a categorical variable
Theoretical = theoretical_prob,
Empirical = as.numeric(empirical_prob)
)
# Reshape data for easy plotting with ggplot
comparison_melted <- reshape2::melt(comparison, id.vars = "Heads")
ggplot(comparison_melted, aes(x = Heads, y = value, fill = variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Comparison of Theoretical and Empirical Probabilities",
x = "Number of Heads",
y = "Probability") +
scale_fill_manual(values = c("Theoretical" = "#9999CC", "Empirical" = "#66CC99"),
name = "Type",
labels = c("Theoretical", "Empirical")) +
theme_minimal()

LS0tDQp0aXRsZTogIlNUQVQgNTEwNCBIVzEiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyBOYW1lIDogTXN0IE5pZ2FyIFN1bHRhbmENCg0KDQpgYGB7cn0NCm4gPSA1ICAgICAgICAjIE51bWJlciBvZiBjb2luIGZsaXBzDQpwID0gMC41ICAgICAgIyBQcm9iYWJpbGl0eSBvZiBoZWFkcw0KaV92YWxzID0gMDo1ICMgUG9zc2libGUgdmFsdWVzIGZvciBudW1iZXIgb2YgaGVhZHMgKDAgdG8gNSkNCg0KdGhlb3JldGljYWxfcHJvYiA9IGRiaW5vbShpX3ZhbHMsIHNpemUgPSBuLCBwcm9iID0gcCkNCg0Kc2V0LnNlZWQoMTIzKSAgIyBTZXQgc2VlZCBmb3IgcmVwcm9kdWNpYmlsaXR5DQpuX3RyaWFscyA9IDEwMDAgICMgTnVtYmVyIG9mIHRyaWFscw0KDQpyZXN1bHRzID0gcmVwbGljYXRlKG5fdHJpYWxzLCBzdW0oc2FtcGxlKGMoMCwgMSksIG4sIHJlcGxhY2UgPSBUUlVFKSkpDQoNCm91dGNvbWVzIDwtIHRhYmxlKGZhY3RvcihyZXN1bHRzLCBsZXZlbHMgPSAwOjUpKQ0KDQojIEVtcGlyaWNhbCBwcm9iYWJpbGl0aWVzIChmcmVxdWVuY3kgLyB0b3RhbCB0cmlhbHMpDQplbXBpcmljYWxfcHJvYiA9IG91dGNvbWVzIC8gbl90cmlhbHMNCg0KIyBDb21wYXJpc29uIGJldHdlZW4gdGhlb3JldGljYWwgYW5kIGVtcGlyaWNhbCBwcm9iYWJpbGl0aWVzDQpjb21wYXJpc29uID0gZGF0YS5mcmFtZSgNCiAgSGVhZHMgPSBpX3ZhbHMsDQogIFRoZW9yZXRpY2FsID0gdGhlb3JldGljYWxfcHJvYiwNCiAgRW1waXJpY2FsID0gYXMubnVtZXJpYyhlbXBpcmljYWxfcHJvYikNCikNCg0KcHJpbnQoY29tcGFyaXNvbikNCg0KbGlicmFyeShnZ3Bsb3QyKQ0KDQpjb21wYXJpc29uID0gZGF0YS5mcmFtZSgNCiAgSGVhZHMgPSBmYWN0b3IoaV92YWxzKSwgICMgVHJlYXQgSGVhZHMgYXMgYSBjYXRlZ29yaWNhbCB2YXJpYWJsZQ0KICBUaGVvcmV0aWNhbCA9IHRoZW9yZXRpY2FsX3Byb2IsDQogIEVtcGlyaWNhbCA9IGFzLm51bWVyaWMoZW1waXJpY2FsX3Byb2IpDQopDQojIFJlc2hhcGUgZGF0YSBmb3IgZWFzeSBwbG90dGluZyB3aXRoIGdncGxvdA0KY29tcGFyaXNvbl9tZWx0ZWQgPC0gcmVzaGFwZTI6Om1lbHQoY29tcGFyaXNvbiwgaWQudmFycyA9ICJIZWFkcyIpDQoNCmdncGxvdChjb21wYXJpc29uX21lbHRlZCwgYWVzKHggPSBIZWFkcywgeSA9IHZhbHVlLCBmaWxsID0gdmFyaWFibGUpKSArDQogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBwb3NpdGlvbiA9ICJkb2RnZSIpICsNCiAgbGFicyh0aXRsZSA9ICJDb21wYXJpc29uIG9mIFRoZW9yZXRpY2FsIGFuZCBFbXBpcmljYWwgUHJvYmFiaWxpdGllcyIsDQogICAgICAgeCA9ICJOdW1iZXIgb2YgSGVhZHMiLA0KICAgICAgIHkgPSAiUHJvYmFiaWxpdHkiKSArDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoIlRoZW9yZXRpY2FsIiA9ICIjOTk5OUNDIiwgIkVtcGlyaWNhbCIgPSAiIzY2Q0M5OSIpLA0KICAgICAgICAgICAgICAgICAgICBuYW1lID0gIlR5cGUiLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJUaGVvcmV0aWNhbCIsICJFbXBpcmljYWwiKSkgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KYGBgDQoNCg==