LME models (Project 1: Familial)

Sample description for model 1 (familial)

LME model 1: Mutation pos, baseline CDR 0 or .5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -495.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3458 -0.0584 -0.0137  0.0267  5.9586 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.059563 0.24406       
##            monthssincebaseline 0.003596 0.05997  -0.80
##  Residual                      0.002799 0.05290       
## Number of obs: 269, groups:  unique_id, 54
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.455772   0.033579 46.588618 -13.573   <2e-16 ***
## y.plot                     -0.061617   0.030386 48.331730  -2.028   0.0481 *  
## monthssincebaseline        -0.014665   0.009751 36.868620  -1.504   0.1411    
## baseline_age                0.001566   0.028666 33.409306   0.055   0.9567    
## educ                        0.013107   0.028180 35.698911   0.465   0.6447    
## y.plot:monthssincebaseline  0.021738   0.008742 38.687492   2.487   0.0173 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.036                            
## mnthssncbsl -0.626 -0.013                     
## baseline_ag  0.024  0.199 -0.021              
## educ        -0.003  0.049  0.098 -0.247       
## y.plt:mnths -0.021 -0.613  0.031 -0.077  0.057
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -535.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5355 -0.0344 -0.0087  0.0105  6.5946 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.059677 0.24429       
##            monthssincebaseline 0.001284 0.03583  -0.48
##  Residual                      0.002360 0.04858       
## Number of obs: 270, groups:  unique_id, 56
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.475450   0.033182 48.540074 -14.329   <2e-16 ***
## y.plot                     -0.083432   0.044014 46.203196  -1.896   0.0643 .  
## monthssincebaseline        -0.003347   0.007017 37.098711  -0.477   0.6362    
## baseline_age               -0.041154   0.041125 39.257752  -1.001   0.3231    
## educ                        0.035488   0.033234 36.489578   1.068   0.2926    
## y.plot:monthssincebaseline  0.005547   0.007420 39.857106   0.748   0.4591    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.003                            
## mnthssncbsl -0.278 -0.037                     
## baseline_ag  0.067  0.594 -0.060              
## educ        -0.095  0.130  0.065 -0.123       
## y.plt:mnths -0.017 -0.196 -0.143  0.003  0.013
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -547.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4376 -0.0633 -0.0126  0.0426  6.1226 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.055469 0.23552       
##            monthssincebaseline 0.002425 0.04924  -0.66
##  Residual                      0.002651 0.05149       
## Number of obs: 290, groups:  unique_id, 60
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.437611   0.031112 53.481468 -14.065  < 2e-16 ***
## y.plot                     -0.118901   0.038521 54.343918  -3.087  0.00318 ** 
## monthssincebaseline        -0.014676   0.008333 42.839743  -1.761  0.08535 .  
## baseline_age               -0.050068   0.038142 41.912512  -1.313  0.19643    
## educ                        0.039940   0.028925 42.856651   1.381  0.17450    
## y.plot:monthssincebaseline  0.027108   0.008484 46.201251   3.195  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.121                            
## mnthssncbsl -0.447  0.010                     
## baseline_ag -0.071  0.600 -0.042              
## educ        -0.085  0.003  0.098 -0.213       
## y.plt:mnths  0.026 -0.317 -0.121  0.018  0.003
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -504.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4485 -0.0562 -0.0108  0.0314  6.4149 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.051958 0.22794       
##            monthssincebaseline 0.001419 0.03767  -0.56
##  Residual                      0.002489 0.04989       
## Number of obs: 253, groups:  unique_id, 50
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -0.4657899  0.0326873 43.0082800 -14.250  < 2e-16
## y.plot                     -0.1117846  0.0332887 44.3256883  -3.358  0.00162
## monthssincebaseline        -0.0026380  0.0074968 31.4621550  -0.352  0.72727
## baseline_age               -0.0414756  0.0335695 34.5065822  -1.236  0.22498
## educ                        0.0517082  0.0319853 32.2529822   1.617  0.11570
## y.plot:monthssincebaseline -0.0009477  0.0083941 43.6950830  -0.113  0.91062
##                               
## (Intercept)                ***
## y.plot                     ** 
## monthssincebaseline           
## baseline_age                  
## educ                          
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.074                            
## mnthssncbsl -0.343 -0.023                     
## baseline_ag  0.002  0.351 -0.034              
## educ        -0.007 -0.164  0.080 -0.330       
## y.plt:mnths -0.009 -0.202 -0.209  0.049 -0.038
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -532.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4250 -0.0478 -0.0087  0.0235  6.0670 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.053695 0.23172       
##            monthssincebaseline 0.003342 0.05781  -0.75
##  Residual                      0.002690 0.05186       
## Number of obs: 284, groups:  unique_id, 58
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.454281   0.030825 50.082113 -14.738  < 2e-16 ***
## y.plot                     -0.098412   0.032761 52.599156  -3.004  0.00407 ** 
## monthssincebaseline        -0.012163   0.009291 38.736970  -1.309  0.19820    
## baseline_age               -0.035578   0.030658 32.543853  -1.161  0.25429    
## educ                        0.041416   0.027851 35.668747   1.487  0.14579    
## y.plot:monthssincebaseline  0.015764   0.009143 43.189867   1.724  0.09184 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.006                            
## mnthssncbsl -0.562 -0.053                     
## baseline_ag -0.004  0.440 -0.063              
## educ        -0.040 -0.197  0.103 -0.354       
## y.plt:mnths -0.027 -0.518 -0.046 -0.085  0.090
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -544.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4370 -0.0589 -0.0148  0.0280  6.1144 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.054657 0.23379       
##            monthssincebaseline 0.002785 0.05277  -0.67
##  Residual                      0.002656 0.05154       
## Number of obs: 290, groups:  unique_id, 60
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.446629   0.030683 52.898930 -14.556  < 2e-16 ***
## y.plot                     -0.116770   0.035502 53.278255  -3.289  0.00179 ** 
## monthssincebaseline        -0.011956   0.008755 41.905644  -1.366  0.17934    
## baseline_age               -0.054454   0.034996 35.223957  -1.556  0.12865    
## educ                        0.056228   0.028842 40.523443   1.949  0.05818 .  
## y.plot:monthssincebaseline  0.020080   0.008805 46.646946   2.281  0.02719 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.027                            
## mnthssncbsl -0.467 -0.044                     
## baseline_ag -0.014  0.539 -0.067              
## educ        -0.077 -0.168  0.106 -0.322       
## y.plt:mnths -0.014 -0.401 -0.087 -0.057  0.063
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -559.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4724 -0.0527 -0.0119  0.0222  6.1679 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.053420 0.23113       
##            monthssincebaseline 0.002985 0.05463  -0.71
##  Residual                      0.002608 0.05106       
## Number of obs: 296, groups:  unique_id, 62
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.446455   0.029923 54.933748 -14.920  < 2e-16 ***
## y.plot                     -0.121493   0.035830 57.440114  -3.391  0.00127 ** 
## monthssincebaseline        -0.011206   0.008887 44.810361  -1.261  0.21384    
## baseline_age               -0.054314   0.033929 41.265263  -1.601  0.11705    
## educ                        0.047712   0.027472 41.361304   1.737  0.08987 .  
## y.plot:monthssincebaseline  0.016293   0.009256 51.309152   1.760  0.08434 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.059                            
## mnthssncbsl -0.499 -0.044                     
## baseline_ag -0.006  0.547 -0.101              
## educ        -0.089 -0.133  0.120 -0.301       
## y.plt:mnths  0.005 -0.376 -0.128  0.013  0.035

Sample description for model 2 (familial)

Model 2 same as model 1, but in a sample with baseline CDR+NACC-FTLD global scores >= 0.5 ( no zeros). Sample size was too small to look at 1+. Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.
## [1] "N participants at each visit (NOT chapter)"
## 
##  1  2  3 
## 60 22 12 
## [1] "Gentic breakdown"
## 
##   C9 MAPT 
##   27   10 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1   2 
##  13   3   2

LME model 2: Mutation pos baseline CDR 0.5+ or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0694314 (tol = 0.002, component 1)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00200828 (tol = 0.002, component 1)

## boundary (singular) fit: see help('isSingular')

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -47.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1625 -0.0644 -0.0069  0.0489  3.6455 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.2722147 0.52174      
##            monthssincebaseline 0.0007231 0.02689  0.32
##  Residual                      0.0028577 0.05346      
## Number of obs: 68, groups:  unique_id, 16
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.856288   0.663425 11.799764  -2.798  0.01633 * 
## y.plot                      0.109826   0.118568 11.097699   0.926  0.37401   
## monthssincebaseline         0.012016   0.009675  6.086990   1.242  0.25998   
## baseline_age                0.030392   0.012503 11.873277   2.431  0.03188 * 
## educ                        0.021796   0.006282  9.041001   3.469  0.00701 **
## y.plot:monthssincebaseline  0.002573   0.010439  6.251182   0.246  0.81320   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.312                            
## mnthssncbsl  0.035  0.016                     
## baseline_ag -0.959  0.359 -0.006              
## educ        -0.053 -0.115  0.058 -0.155       
## y.plt:mnths  0.016  0.127  0.091 -0.015  0.013
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -53.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8698 -0.0360 -0.0032  0.0989  3.3623 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         1.461e-01 0.382253     
##            monthssincebaseline 1.004e-05 0.003168 0.47
##  Residual                      3.518e-03 0.059311     
## Number of obs: 52, groups:  unique_id, 11
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -2.4784463  1.0253754  7.3432153  -2.417   0.0447 *
## y.plot                     -0.1360304  0.1645331  7.5076875  -0.827   0.4339  
## monthssincebaseline        -0.0006591  0.0021448  7.5716935  -0.307   0.7669  
## baseline_age                0.0156757  0.0105578  7.3449217   1.485   0.1792  
## educ                        0.1050905  0.0494203  7.6063929   2.126   0.0679 .
## y.plot:monthssincebaseline  0.0022546  0.0030057 11.4258145   0.750   0.4684  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.240                            
## mnthssncbsl  0.078 -0.065                     
## baseline_ag -0.574  0.139  0.038              
## educ        -0.845  0.160 -0.092  0.064       
## y.plt:mnths  0.071  0.153 -0.634 -0.148 -0.001
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0694314 (tol = 0.002, component 1)
## 
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -71.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2866 -0.0685  0.0014  0.0469  3.8667 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.246943 0.49693      
##            monthssincebaseline 0.000169 0.01300  0.20
##  Residual                      0.002546 0.05046      
## Number of obs: 77, groups:  unique_id, 18
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.722608   0.854442 13.992577  -2.016  0.06341 . 
## y.plot                     -0.053042   0.206789 14.059055  -0.257  0.80128   
## monthssincebaseline         0.005595   0.004419  7.223826   1.266  0.24478   
## baseline_age                0.027014   0.013922 13.974492   1.940  0.07279 . 
## educ                        0.023265   0.010388 13.830954   2.240  0.04209 * 
## y.plot:monthssincebaseline -0.013964   0.003279  6.942927  -4.258  0.00382 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.728                            
## mnthssncbsl  0.040 -0.012                     
## baseline_ag -0.963  0.613 -0.026              
## educ        -0.630  0.802 -0.005  0.438       
## y.plt:mnths  0.036  0.034  0.159 -0.023 -0.063
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00200828 (tol = 0.002, component 1)
## 
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -51.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8329 -0.1091 -0.0189  0.0846  3.3773 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         1.228e-01 0.350399      
##            monthssincebaseline 2.584e-05 0.005083 -1.00
##  Residual                      3.546e-03 0.059547      
## Number of obs: 49, groups:  unique_id, 10
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.964599   0.534447  6.378716  -1.805   0.1182  
## y.plot                     -0.355772   0.119401  7.249678  -2.980   0.0197 *
## monthssincebaseline         0.001890   0.002259  6.943181   0.837   0.4305  
## baseline_age               -0.009185   0.004059  3.744655  -2.263   0.0910 .
## educ                        0.086830   0.035316  7.326733   2.459   0.0421 *
## y.plot:monthssincebaseline -0.003589   0.002256  7.923605  -1.591   0.1506  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.019                            
## mnthssncbsl -0.537 -0.071                     
## baseline_ag  0.118  0.163 -0.196              
## educ        -0.918 -0.022  0.420 -0.456       
## y.plt:mnths  0.152 -0.763 -0.286  0.040 -0.166
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## 
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -63.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2615 -0.0773 -0.0098  0.0371  3.8070 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.2452005 0.49518      
##            monthssincebaseline 0.0004693 0.02166  0.44
##  Residual                      0.0026178 0.05116      
## Number of obs: 74, groups:  unique_id, 17
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.059679   0.706102 10.331596  -1.501   0.1633   
## y.plot                     -0.196187   0.133419 12.985299  -1.470   0.1653   
## monthssincebaseline         0.008115   0.007515  6.883063   1.080   0.3166   
## baseline_age                0.015855   0.013003 10.445411   1.219   0.2495   
## educ                        0.019334   0.005879  9.219041   3.289   0.0091 **
## y.plot:monthssincebaseline -0.013383   0.008363  7.173937  -1.600   0.1525   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.586                            
## mnthssncbsl  0.105 -0.034                     
## baseline_ag -0.969  0.572 -0.059              
## educ        -0.202  0.207  0.006  0.026       
## y.plt:mnths  0.018  0.149  0.273  0.010 -0.154
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -70.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2926 -0.0626 -0.0108  0.0425  3.8526 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.2354120 0.48519      
##            monthssincebaseline 0.0002491 0.01578  0.46
##  Residual                      0.0025529 0.05053      
## Number of obs: 77, groups:  unique_id, 18
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.970038   0.790646 11.334285  -1.227   0.2447  
## y.plot                     -0.233796   0.159074 13.810506  -1.470   0.1640  
## monthssincebaseline         0.007215   0.005098  7.501805   1.415   0.1971  
## baseline_age                0.015627   0.013793 11.393805   1.133   0.2805  
## educ                        0.015889   0.007071 11.451416   2.247   0.0452 *
## y.plot:monthssincebaseline -0.014169   0.004415  7.728243  -3.209   0.0130 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.713                            
## mnthssncbsl  0.106 -0.039                     
## baseline_ag -0.973  0.660 -0.065              
## educ        -0.487  0.578 -0.005  0.325       
## y.plt:mnths  0.038  0.142  0.139 -0.007 -0.167
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -69.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2879 -0.0476 -0.0042  0.0347  3.8554 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.227633 0.47711      
##            monthssincebaseline 0.000300 0.01732  0.46
##  Residual                      0.002554 0.05054      
## Number of obs: 77, groups:  unique_id, 18
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.958660   0.719049 12.497298  -1.333   0.2062  
## y.plot                     -0.256772   0.148308 14.082230  -1.731   0.1052  
## monthssincebaseline         0.009128   0.005509  7.574427   1.657   0.1383  
## baseline_age                0.015763   0.012608 12.498419   1.250   0.2341  
## educ                        0.015844   0.006516 10.779157   2.432   0.0337 *
## y.plot:monthssincebaseline -0.013731   0.005117  7.866894  -2.684   0.0282 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.650                            
## mnthssncbsl  0.086 -0.027                     
## baseline_ag -0.968  0.587 -0.046              
## educ        -0.413  0.503  0.036  0.232       
## y.plt:mnths  0.055  0.158  0.030 -0.028 -0.164

LME models (Project 2: Sporadic)

Sample description for model 1 (Sporadic)

LME model 1: Mutation- baseline CDR <=0.5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed age 45 restriction. using OG FTLD CDR
## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -226.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5658 -0.0374 -0.0050  0.0274  5.8106 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.149399 0.38652      
##            monthssincebaseline 0.009108 0.09544  0.57
##  Residual                      0.006251 0.07906      
## Number of obs: 217, groups:  unique_id, 41
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.32807    0.06176 37.33425  -5.312 5.23e-06 ***
## y.plot                     -0.14676    0.07809 38.05675  -1.880   0.0678 .  
## monthssincebaseline         0.02692    0.01944 30.28371   1.385   0.1762    
## baseline_age                0.09852    0.05617 35.27097   1.754   0.0881 .  
## educ                       -0.06004    0.04529 31.43146  -1.326   0.1945    
## y.plot:monthssincebaseline -0.00848    0.02062 26.85583  -0.411   0.6842    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.079                            
## mnthssncbsl  0.518 -0.036                     
## baseline_ag  0.046  0.318  0.014              
## educ        -0.004 -0.076  0.015  0.052       
## y.plt:mnths -0.044  0.515 -0.048  0.036 -0.007

## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -797.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3508 -0.0333  0.0004  0.0309  5.7280 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.1224904 0.34999      
##            monthssincebaseline 0.0002896 0.01702  0.14
##  Residual                      0.0002570 0.01603      
## Number of obs: 223, groups:  unique_id, 44
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.388323   0.054960 40.100534  -7.066  1.5e-08 ***
## y.plot                     -0.057666   0.078474 40.288120  -0.735    0.467    
## monthssincebaseline         0.005254   0.003619 29.663191   1.452    0.157    
## baseline_age                0.082699   0.071341 40.016606   1.159    0.253    
## educ                       -0.054245   0.045674 39.704141  -1.188    0.242    
## y.plot:monthssincebaseline -0.001288   0.003486 30.667681  -0.370    0.714    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.171                            
## mnthssncbsl  0.122  0.011                     
## baseline_ag  0.273  0.714  0.019              
## educ        -0.036 -0.103  0.006 -0.027       
## y.plt:mnths -0.002  0.086 -0.001  0.002  0.001

## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -282.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7841 -0.0738  0.0038  0.0518  6.0735 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.129633 0.36005      
##            monthssincebaseline 0.008924 0.09447  0.78
##  Residual                      0.005692 0.07544      
## Number of obs: 240, groups:  unique_id, 47
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.34668    0.05452 41.23504  -6.359  1.3e-07 ***
## y.plot                     -0.29770    0.08174 51.74463  -3.642 0.000626 ***
## monthssincebaseline         0.01543    0.01798 37.18291   0.858 0.396249    
## baseline_age               -0.03069    0.05170 41.62848  -0.594 0.555973    
## educ                       -0.01894    0.03518 30.62777  -0.538 0.594329    
## y.plot:monthssincebaseline  0.01184    0.02288 42.18854   0.517 0.607523    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.091                            
## mnthssncbsl  0.683 -0.053                     
## baseline_ag  0.101  0.529  0.110              
## educ        -0.006 -0.189 -0.001 -0.090       
## y.plt:mnths -0.132  0.540 -0.237 -0.030  0.054

## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -705.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1435 -0.0362  0.0010  0.0365  5.4469 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.1335158 0.36540      
##            monthssincebaseline 0.0002945 0.01716  0.08
##  Residual                      0.0002839 0.01685      
## Number of obs: 199, groups:  unique_id, 37
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.370265   0.060520 33.014854  -6.118 6.81e-07 ***
## y.plot                     -0.115930   0.068874 33.034804  -1.683    0.102    
## monthssincebaseline         0.006183   0.003893 25.433886   1.588    0.125    
## baseline_age                0.088382   0.066092 33.000037   1.337    0.190    
## educ                       -0.057602   0.050469 32.974870  -1.141    0.262    
## y.plot:monthssincebaseline -0.004953   0.003699 27.787697  -1.339    0.191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.038                            
## mnthssncbsl  0.076 -0.001                     
## baseline_ag  0.109  0.424  0.004              
## educ        -0.030 -0.065  0.001  0.043       
## y.plt:mnths -0.003  0.067 -0.065  0.002 -0.001

## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -259.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6779 -0.0362 -0.0035  0.0140  5.9883 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.12214  0.34949      
##            monthssincebaseline 0.00763  0.08735  0.49
##  Residual                      0.00589  0.07674      
## Number of obs: 231, groups:  unique_id, 44
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.31244    0.05509 40.04068  -5.672 1.36e-06 ***
## y.plot                     -0.22326    0.07157 45.31946  -3.120  0.00315 ** 
## monthssincebaseline         0.02919    0.01783 31.64744   1.637  0.11161    
## baseline_age                0.01606    0.06434 39.56063   0.250  0.80412    
## educ                       -0.02646    0.04482 36.95800  -0.590  0.55863    
## y.plot:monthssincebaseline -0.02674    0.01777 36.37102  -1.505  0.14104    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.194                            
## mnthssncbsl  0.453 -0.061                     
## baseline_ag -0.037  0.628  0.015              
## educ         0.041 -0.296  0.009 -0.129       
## y.plt:mnths -0.089  0.337 -0.185  0.005  0.008

## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -281
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7487 -0.0349 -0.0078  0.0263  6.0747 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.107704 0.32818      
##            monthssincebaseline 0.007916 0.08897  0.59
##  Residual                      0.005713 0.07558      
## Number of obs: 240, groups:  unique_id, 47
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.31652    0.05041 42.54800  -6.279  1.5e-07 ***
## y.plot                     -0.30326    0.07424 50.65226  -4.085 0.000157 ***
## monthssincebaseline         0.02621    0.01766 33.84413   1.484 0.147046    
## baseline_age               -0.04027    0.05987 41.45043  -0.673 0.504931    
## educ                       -0.01242    0.03933 36.66855  -0.316 0.753988    
## y.plot:monthssincebaseline -0.01806    0.01910 39.79778  -0.946 0.349946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.165                            
## mnthssncbsl  0.537 -0.067                     
## baseline_ag  0.016  0.671  0.036              
## educ         0.030 -0.297  0.012 -0.165       
## y.plt:mnths -0.118  0.378 -0.215  0.002  0.024

## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -308.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8699 -0.0318 -0.0094  0.0199  6.3030 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.126167 0.35520      
##            monthssincebaseline 0.007438 0.08625  0.56
##  Residual                      0.005318 0.07292      
## Number of obs: 257, groups:  unique_id, 50
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.35227    0.05216 46.95838  -6.754 1.94e-08 ***
## y.plot                     -0.17399    0.07165 52.82019  -2.428   0.0186 *  
## monthssincebaseline         0.02376    0.01638 36.92836   1.451   0.1552    
## baseline_age                0.01931    0.06011 46.24075   0.321   0.7495    
## educ                       -0.04362    0.04020 41.91298  -1.085   0.2841    
## y.plot:monthssincebaseline -0.01368    0.01630 39.82355  -0.839   0.4063    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.113                            
## mnthssncbsl  0.508 -0.034                     
## baseline_ag  0.047  0.660  0.049              
## educ         0.022 -0.152  0.017 -0.057       
## y.plt:mnths -0.087  0.389 -0.147  0.022  0.004

Sample description for model 2 (Sporadic)

## [1] "N participants at each visit (NOT chapter)"
## 
##   1   2   3 
## 121  48  27 
## [1] "Gentic breakdown"
## 
## NONE 
##   77 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1 
##  21  34

LME model 2: Mutation-, baseline CDR 0.5 or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Models do not converge. We see a trend for the interaction of Nback and time.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 84.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.66738 -0.17845 -0.01928  0.07065  3.06938 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.4478   1.2033       
##            monthssincebaseline 0.5526   0.7433   0.62
##  Residual                      0.0225   0.1500       
## Number of obs: 131, groups:  unique_id, 27
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 1.197991   0.256641 23.053700   4.668 0.000106 ***
## y.plot                     -0.526604   0.198041 25.157334  -2.659 0.013434 *  
## monthssincebaseline         0.340961   0.196116 13.070879   1.739 0.105594    
## baseline_age               -0.002775   0.170673 23.295617  -0.016 0.987166    
## educ                        0.127931   0.184134 23.020395   0.695 0.494154    
## y.plot:monthssincebaseline  0.044719   0.169116 13.161065   0.264 0.795546    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.168                            
## mnthssncbsl  0.663  0.053                     
## baseline_ag -0.082 -0.016 -0.005              
## educ         0.054  0.037 -0.009 -0.156       
## y.plt:mnths  0.047  0.710  0.051  0.030  0.013
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -130.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.25033 -0.02995 -0.00067  0.02890  2.89681 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.8937961 0.94541      
##            monthssincebaseline 0.3849604 0.62045  0.61
##  Residual                      0.0009838 0.03137      
## Number of obs: 73, groups:  unique_id, 13
## 
## Fixed effects:
##                            Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)                  0.5478     0.2944  7.1244   1.861   0.1043  
## y.plot                      -0.8879     0.2719  8.8163  -3.266   0.0100 *
## monthssincebaseline          0.2035     0.2063  9.3748   0.986   0.3487  
## baseline_age                 0.2808     0.1969  8.9609   1.426   0.1877  
## educ                         0.1030     0.2425  8.8847   0.425   0.6811  
## y.plot:monthssincebaseline  -0.5876     0.1848  8.9933  -3.180   0.0112 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.232                            
## mnthssncbsl  0.618  0.144                     
## baseline_ag  0.103  0.176 -0.012              
## educ         0.165 -0.400 -0.023  0.147       
## y.plt:mnths  0.141  0.593  0.202  0.018 -0.012
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 98.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.70424 -0.09427 -0.00753  0.04311  3.13716 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.49854  1.2241       
##            monthssincebaseline 0.53827  0.7337   0.65
##  Residual                      0.02158  0.1469       
## Number of obs: 142, groups:  unique_id, 33
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 1.475969   0.240011 18.713812   6.150    7e-06 ***
## y.plot                     -0.814513   0.192027 19.961670  -4.242 0.000401 ***
## monthssincebaseline         0.369714   0.185195 14.074439   1.996 0.065617 .  
## baseline_age               -0.093692   0.154640 26.370101  -0.606 0.549781    
## educ                        0.244531   0.167127 26.049286   1.463 0.155391    
## y.plot:monthssincebaseline  0.001298   0.148129 14.117059   0.009 0.993129    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.154                            
## mnthssncbsl  0.696  0.056                     
## baseline_ag -0.114  0.149 -0.016              
## educ         0.004 -0.167 -0.016 -0.260       
## y.plt:mnths  0.054  0.694  0.045  0.021  0.000
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -128.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.24355 -0.02684  0.00310  0.02301  2.87983 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         1.3930192 1.18026      
##            monthssincebaseline 0.8381586 0.91551  0.90
##  Residual                      0.0009931 0.03151      
## Number of obs: 71, groups:  unique_id, 12
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                 0.51663    0.36611 10.64792   1.411    0.187
## y.plot                     -0.27369    0.34580 10.23548  -0.791    0.447
## monthssincebaseline         0.35663    0.29050 10.51255   1.228    0.246
## baseline_age                0.13860    0.17599  7.81340   0.788    0.454
## educ                       -0.19714    0.16346  8.43017  -1.206    0.261
## y.plot:monthssincebaseline -0.06945    0.26993  9.88808  -0.257    0.802
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.201                            
## mnthssncbsl  0.874  0.182                     
## baseline_ag  0.085 -0.162 -0.040              
## educ         0.189 -0.107 -0.012  0.408       
## y.plt:mnths  0.177  0.882  0.169  0.002 -0.013
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 96.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.69134 -0.14588 -0.00498  0.05243  3.11567 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.12828  1.0622       
##            monthssincebaseline 0.49013  0.7001   0.42
##  Residual                      0.02178  0.1476       
## Number of obs: 140, groups:  unique_id, 32
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 1.31199    0.21666 22.56571   6.056 3.85e-06 ***
## y.plot                     -0.81351    0.18728 26.62203  -4.344 0.000182 ***
## monthssincebaseline         0.28911    0.18017 13.72332   1.605 0.131316    
## baseline_age                0.04665    0.15485 28.01287   0.301 0.765434    
## educ                        0.32273    0.17683 27.82056   1.825 0.078753 .  
## y.plot:monthssincebaseline -0.19589    0.18322 14.06151  -1.069 0.303007    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.134                            
## mnthssncbsl  0.555 -0.017                     
## baseline_ag -0.149 -0.009  0.004              
## educ        -0.017 -0.106  0.005 -0.226       
## y.plt:mnths -0.013  0.682 -0.008  0.003 -0.011
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 91.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.68820 -0.09009 -0.00607  0.05254  3.13471 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.09391  1.0459       
##            monthssincebaseline 0.51933  0.7206   0.59
##  Residual                      0.02159  0.1469       
## Number of obs: 142, groups:  unique_id, 33
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 1.37097    0.21265 12.61656   6.447 2.51e-05 ***
## y.plot                     -0.90712    0.17685 16.74547  -5.129 8.77e-05 ***
## monthssincebaseline         0.31958    0.18480 13.92029   1.729   0.1059    
## baseline_age               -0.05873    0.13729 28.09508  -0.428   0.6721    
## educ                        0.30395    0.15131 27.89389   2.009   0.0543 .  
## y.plot:monthssincebaseline -0.05218    0.16841 14.15050  -0.310   0.7612    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.142                            
## mnthssncbsl  0.678  0.020                     
## baseline_ag -0.118  0.087 -0.008              
## educ        -0.006 -0.180 -0.009 -0.255       
## y.plt:mnths  0.018  0.730  0.012  0.001  0.003
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 98.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.68238 -0.13004 -0.00464  0.05062  3.14269 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.01904  1.0095       
##            monthssincebaseline 0.49995  0.7071   0.31
##  Residual                      0.02156  0.1468       
## Number of obs: 142, groups:  unique_id, 33
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 1.33471    0.20606 18.13800   6.477 4.15e-06 ***
## y.plot                     -0.91607    0.16853 22.31491  -5.436 1.76e-05 ***
## monthssincebaseline         0.24574    0.18048 13.66441   1.362   0.1953    
## baseline_age               -0.01576    0.15548 27.92701  -0.101   0.9200    
## educ                        0.32084    0.17365 27.54705   1.848   0.0754 .  
## y.plot:monthssincebaseline -0.18980    0.15927 14.13615  -1.192   0.2530    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.161                            
## mnthssncbsl  0.501 -0.004                     
## baseline_ag -0.139  0.041  0.012              
## educ        -0.002 -0.240  0.014 -0.238       
## y.plt:mnths  0.003  0.592  0.046 -0.017 -0.007

Sample description for model 3

## [1] "N participants at each visit (NOT chapter)"
## 
##   1   2   3 
## 226 103  60 
## [1] "Gentic breakdown"
## 
## NONE 
##  154 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   0   1 
##  23  58  34

LME model 3: mutation - full sample

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 14.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3986 -0.0300 -0.0049  0.0103  4.4073 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.04015  1.0199       
##            monthssincebaseline 0.24331  0.4933   0.66
##  Residual                      0.01095  0.1046       
## Number of obs: 275, groups:  unique_id, 57
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 0.264821   0.142234 51.486798   1.862   0.0683 .  
## y.plot                     -0.608340   0.117261 59.852912  -5.188 2.66e-06 ***
## monthssincebaseline         0.153494   0.083788 33.122423   1.832   0.0760 .  
## baseline_age                0.231958   0.107217 51.101941   2.163   0.0352 *  
## educ                        0.003638   0.094150 48.611887   0.039   0.9693    
## y.plot:monthssincebaseline -0.025269   0.078765 33.894615  -0.321   0.7503    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.100                            
## mnthssncbsl  0.667  0.012                     
## baseline_ag  0.049  0.196  0.004              
## educ        -0.015 -0.019  0.014 -0.008       
## y.plt:mnths  0.011  0.687 -0.025  0.016  0.025

## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -587.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9189 -0.0066 -0.0009  0.0033  5.0517 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.5497224 0.7414       
##            monthssincebaseline 0.1716530 0.4143   0.74
##  Residual                      0.0003239 0.0180       
## Number of obs: 234, groups:  unique_id, 48
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.16951    0.11707 42.67815  -1.448 0.154922    
## y.plot                     -0.55712    0.12163 55.65701  -4.580 2.66e-05 ***
## monthssincebaseline         0.10351    0.07031 42.36994   1.472 0.148393    
## baseline_age                0.07713    0.09159 38.33308   0.842 0.404962    
## educ                       -0.05902    0.06311 33.23580  -0.935 0.356438    
## y.plot:monthssincebaseline -0.27358    0.06597 42.62510  -4.147 0.000157 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.202                            
## mnthssncbsl  0.720  0.035                     
## baseline_ag  0.321  0.523  0.047              
## educ         0.009 -0.145  0.016 -0.041       
## y.plt:mnths  0.011  0.628 -0.002 -0.006 -0.015

## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 18.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5141 -0.0269 -0.0047  0.0166  4.6163 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         1.174830 1.08390      
##            monthssincebaseline 0.231576 0.48122  0.69
##  Residual                      0.009989 0.09995      
## Number of obs: 309, groups:  unique_id, 69
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 0.40579    0.13737 50.84732   2.954  0.00474 ** 
## y.plot                     -0.84052    0.11979 63.76576  -7.017 1.77e-09 ***
## monthssincebaseline         0.17034    0.07607 35.58424   2.239  0.03148 *  
## baseline_age                0.17777    0.10494 51.78911   1.694  0.09628 .  
## educ                        0.05880    0.09296 45.21568   0.633  0.53023    
## y.plot:monthssincebaseline -0.06871    0.06857 37.71170  -1.002  0.32271    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.113                            
## mnthssncbsl  0.678  0.005                     
## baseline_ag  0.081  0.325  0.007              
## educ        -0.037 -0.115  0.020 -0.061       
## y.plt:mnths  0.005  0.653 -0.054  0.014  0.018

## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -530.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7570 -0.0078 -0.0011  0.0043  4.8400 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.6219814 0.78866      
##            monthssincebaseline 0.2658625 0.51562  0.86
##  Residual                      0.0003527 0.01878      
## Number of obs: 208, groups:  unique_id, 40
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)                -0.18010    0.13043 39.86886  -1.381   0.1750  
## y.plot                     -0.30456    0.13441 40.75283  -2.266   0.0288 *
## monthssincebaseline         0.10622    0.09138 38.26754   1.162   0.2523  
## baseline_age                0.08554    0.07189 32.51993   1.190   0.2427  
## educ                       -0.08417    0.05321 30.03943  -1.582   0.1242  
## y.plot:monthssincebaseline -0.10635    0.08937 35.96474  -1.190   0.2419  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.056                            
## mnthssncbsl  0.852  0.009                     
## baseline_ag  0.159  0.251  0.032              
## educ         0.030 -0.069  0.017  0.043       
## y.plt:mnths  0.004  0.833 -0.014  0.013 -0.017

## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 19.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4565 -0.0219 -0.0024  0.0119  4.5401 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.97698  0.9884       
##            monthssincebaseline 0.20059  0.4479   0.47
##  Residual                      0.01028  0.1014       
## Number of obs: 298, groups:  unique_id, 65
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 0.45156    0.12915 58.23604   3.496 0.000909 ***
## y.plot                     -0.98285    0.13685 74.52211  -7.182 4.35e-10 ***
## monthssincebaseline         0.16240    0.07549 34.72560   2.151 0.038502 *  
## baseline_age               -0.02290    0.13406 60.83424  -0.171 0.864952    
## educ                        0.16145    0.10446 60.09098   1.546 0.127476    
## y.plot:monthssincebaseline -0.15393    0.07347 35.06847  -2.095 0.043451 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.014                            
## mnthssncbsl  0.534 -0.063                     
## baseline_ag  0.024  0.539  0.005              
## educ        -0.058 -0.182  0.000 -0.135       
## y.plt:mnths -0.072  0.468 -0.164 -0.010  0.012

## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -0.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4827 -0.0231 -0.0048  0.0156  4.6117 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.792443 0.89019      
##            monthssincebaseline 0.204795 0.45254  0.57
##  Residual                      0.009989 0.09994      
## Number of obs: 309, groups:  unique_id, 69
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 0.40145    0.11511 48.90535   3.487  0.00104 ** 
## y.plot                     -1.06855    0.11161 76.10078  -9.574 1.06e-14 ***
## monthssincebaseline         0.15822    0.07447 35.83424   2.125  0.04059 *  
## baseline_age               -0.05045    0.10432 61.93277  -0.484  0.63039    
## educ                        0.13609    0.08586 59.22842   1.585  0.11828    
## y.plot:monthssincebaseline -0.12446    0.07324 36.95099  -1.699  0.09766 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.069                            
## mnthssncbsl  0.619 -0.057                     
## baseline_ag  0.098  0.457  0.012              
## educ        -0.052 -0.185  0.006 -0.129       
## y.plt:mnths -0.063  0.582 -0.138 -0.014  0.016

## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_motor_sob~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 4.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5505 -0.0203 -0.0038  0.0088  4.7509 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.996478 0.99824      
##            monthssincebaseline 0.185354 0.43053  0.47
##  Residual                      0.009424 0.09708      
## Number of obs: 326, groups:  unique_id, 72
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 0.38776    0.12406 60.47151   3.126  0.00272 ** 
## y.plot                     -1.00670    0.12705 78.68008  -7.924 1.26e-11 ***
## monthssincebaseline         0.14668    0.06916 37.86308   2.121  0.04054 *  
## baseline_age               -0.02689    0.12244 67.32419  -0.220  0.82684    
## educ                        0.10169    0.10053 66.06126   1.011  0.31548    
## y.plot:monthssincebaseline -0.14990    0.06616 38.60806  -2.266  0.02915 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.083                            
## mnthssncbsl  0.520 -0.036                     
## baseline_ag  0.102  0.526  0.012              
## educ        -0.034 -0.190  0.004 -0.138       
## y.plt:mnths -0.046  0.465 -0.116 -0.005  0.005

Power analysis

Power anlaysis with Full Sample

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Using one column matrices in `filter()` was deprecated in dplyr 1.1.0.
## ℹ Please use one dimensional logical vectors instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 46 0.0016445 -0.1171879 0.1204770 1311418 512273
change_ftlcdrm_sob 49 0.0680562 -0.1215492 0.2576616 1950 762
change_strp 39 0.0561758 -0.0957903 0.2081419 1838 718
change_flk 47 -0.1063423 -0.1979202 -0.0147644 187 73
change_nback 37 0.2202996 -0.1761753 0.6167745 814 318
change_humi 46 0.0789750 -0.0688138 0.2267638 880 344
change_gonogo 39 -0.7086424 -0.8579513 -0.5593335 12 5
change_trailsb 38 0.0488388 -0.1771472 0.2748247 5378 2101
change_animals 42 0.0307359 -0.1813445 0.2428163 11959 4672
change_uds3ef 44 0.0199383 -0.1039561 0.1438327 9699 3789
change_trailsb 38 0.0488388 -0.1771472 0.2748247 5378 2101
change_test3meanZ 47 -0.0108771 -0.1225869 0.1008326 26492 10349
change_test5meanZ 48 0.0446316 -0.0994255 0.1886887 2617 1023

Power Familial

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 22 0.0546608 -0.0426198 0.1519413 796 311
change_ftlcdrm_sob 23 0.0712102 -0.1655438 0.3079642 2777 1085
change_strp 22 0.0365825 -0.0965223 0.1696872 3326 1299
change_flk 23 -0.1119959 -0.1972305 -0.0267613 146 57
change_nback 21 0.3188890 -0.0555448 0.6933227 347 136
change_humi 23 0.0574810 -0.0800773 0.1950393 1439 562
change_gonogo 19 -0.6980856 -0.8680622 -0.5281090 15 6
change_trailsb 17 0.0222778 -0.1531571 0.1977127 15576 6085
change_animals 19 0.0124166 -0.2118619 0.2366951 81946 32011
change_uds3ef 21 0.0137885 -0.0981062 0.1256832 16541 6461
change_trailsb_ratio 17 395.5248489 -1223.6570119 2014.7067097 4210 1645
change_test3meanZ 23 -0.0179142 -0.1160679 0.0802396 7541 2946
change_test5meanZ 23 0.0674000 -0.0350702 0.1698702 581 227

Power Sporadic

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 22 -0.0382327 -0.1489209 0.0724555 2106 823
change_ftlcdrm_sob 24 0.0680872 -0.0775101 0.2136845 1149 449
change_strp 16 0.0760328 -0.1024619 0.2545275 1385 541
change_flk 22 -0.0977089 -0.2004608 0.0050431 278 109
change_nback 15 0.0935475 -0.3188679 0.5059628 4882 1907
change_humi 21 0.0992470 -0.0644335 0.2629276 684 267
change_gonogo 18 -0.7137384 -0.8505067 -0.5769701 10 4
change_trailsb 19 0.0682152 -0.2075629 0.3439933 4105 1604
change_animals 21 0.0363308 -0.1741772 0.2468388 8433 3294
change_uds3ef 21 0.0204583 -0.1209361 0.1618527 11998 4687
change_trailsb_ratio 19 -5.2072241 -22.7633894 12.3489412 2855 1116
change_test3meanZ 22 -0.0133122 -0.1400988 0.1134744 22783 8900
change_test5meanZ 23 0.0163610 -0.1627228 0.1954448 30092 11755

Power baseline CDR 0.5 and 1

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000

Other analyses

Association of cognitive task and change in CDR+NACC FTLD SOB

Task n.with.task beta.store CI.low CI.high
change_moca 119 -0.2066665 -0.3727945 -0.0277015
change_strp 96 -0.1160003 -0.3092932 0.0864973
change_flk 121 0.0912820 -0.0886591 0.2654534
change_nback 89 -0.1780339 -0.3724803 0.0313865
change_humi 118 -0.1282161 -0.3019768 0.0537899
change_gonogo 86 0.1114490 -0.1028551 0.3158657
change_animals 109 -0.0935155 -0.2767491 0.0962798
change_uds3ef 80 -0.3532072 -0.5316640 -0.1447215
change_trailsb_ratio 74 -0.3316226 -0.5206676 -0.1115788
change_test3meanZ 121 -0.0357850 -0.2129215 0.1436289
change_test5meanZ 125 -0.1542666 -0.3211734 0.0219352

Post-hoc association of cognitive task and change in CDR+NACC FTLD SOB

limited to sample with animals, uds3ef, smartphone composites, and moca.

Task n.with.task beta.store CI.low CI.high
change_moca 65 -0.4301507 -0.6100477 -0.2080822
change_strp 52 0.1193019 -0.1587675 0.3798357
change_flk 65 -0.0722872 -0.3107083 0.1746918
change_nback 51 -0.0665476 -0.3359698 0.2129413
change_humi 63 -0.1495455 -0.3831153 0.1019988
change_gonogo 58 0.0420896 -0.2185825 0.2971549
change_animals 65 0.0721875 -0.1747890 0.3106177
change_uds3ef 65 -0.1680826 -0.3957576 0.0790575
change_trailsb_ratio 65 -0.3477403 -0.5453835 -0.1134645
change_test3meanZ 65 -0.3071846 -0.5126732 -0.0684109
change_test5meanZ 65 -0.3565664 -0.5524234 -0.1233989

Association of smartphone composite and change in CDR

## [1] "Raw correlation"
## 
##  Pearson's product-moment correlation
## 
## data:  df.smartphone.other$baseline_test5meanZ and df.smartphone.other$change_ftlcdr_sob
## t = -3.1569, df = 134, p-value = 0.00197
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.41314251 -0.09916674
## sample estimates:
##        cor 
## -0.2631076
## [1] "Standardized correlation"
## 
##  Pearson's product-moment correlation
## 
## data:  df.smartphone.other$change_z and df.smartphone.other$composite5_z
## t = -3.0281, df = 134, p-value = 0.002953
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.40418783 -0.08851135
## sample estimates:
##        cor 
## -0.2530736