data<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/US_Japanese_Cars.csv")
Uscars<-(data$USCars)
Japcars<-(data$JapaneseCars)
Japcars<-data[1:28,2]
qqnorm(Japcars)
qqline(Japcars)
qqnorm(Uscars)
qqline(Uscars)
?boxplot
boxplot(Uscars,Japcars, main= "Boxplot of MPG (Untransformed)", col = c("blue", "red"), names=c("US", "Japanese"))
log_Uscars<-log(Uscars)
log_Japcars<-log(Japcars)
qqnorm(log_Japcars)
qqline(log_Japcars)
qqnorm(log_Uscars)
qqline(log_Uscars)
boxplot(log_Uscars,log_Japcars, main= "Boxplot of MPG (Transformed)", col= c("blue","red"),names=c("US","Japanese"))
?t.test
t.test(log_Uscars,log_Japcars, alternative = "less", var.equal=TRUE)
##
## Two Sample t-test
##
## data: log_Uscars and log_Japcars
## t = -9.4828, df = 61, p-value = 6.528e-14
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -0.4366143
## sample estimates:
## mean of x mean of y
## 2.741001 3.270957
The Plots look normal for the Japanse cars for the untransformed and the US cars does not look normal but the tranformed plots for both look normal.
For the t-test, since the value of p is very less than the alpha=0.05 so we reject the H0 hypothesis of equal mean and we deduce that the alternative is true.
data<-read.csv("https://raw.githubusercontent.com/tmatis12/datafiles/main/US_Japanese_Cars.csv")
Uscars<-(data$USCars)
Japcars<-(data$JapaneseCars)
Japcars<-data[1:28,2]
qqnorm(Japcars)
qqline(Japcars)
qqnorm(Uscars)
qqline(Uscars)
?boxplot
boxplot(Uscars,Japcars, main= "Boxplot of MPG (Untransformed)", col = c("blue", "red"), names=c("US", "Japanese"))
log_Uscars<-log(Uscars)
log_Japcars<-log(Japcars)
qqnorm(log_Japcars)
qqline(log_Japcars)
qqnorm(log_Uscars)
qqline(log_Uscars)
boxplot(log_Uscars,log_Japcars, main= "Boxplot of MPG (Transformed)", col= c("blue","red"),names=c("US","Japanese"))
?t.test
t.test(log_Uscars,log_Japcars, alternative = "less", var.equal=TRUE)