How life has changed in Oadby and Wigston: Census 2021.link
# Load necessary libraries
pacman::p_load(pacman, readr, ggplot2, dplyr, tidyverse, scales, gridExtra, knitr)
# Data for the first table (F3a) - England and Wales (excluding GMP)
data_f3a <- data.frame(
Selected_offences = c("Attempted murder", "Threats to kill",
"Assault with injury and assault with intent to cause serious harm",
"Robbery", "Rape", "Sexual assault",
"Total selected offences", "Homicide",
"Total selected offences including homicide"),
`Apr 2010 to Mar 2011` = c(217, 1424, 14647, 17187, 240, 85, 33800, 220, 34020),
`Apr 2011 to Mar 2012` = c(234, 1172, 13130, 16978, 219, 71, 31804, 200, 32004),
`Apr 2012 to Mar 2013` = c(180, 1155, 11839, 13692, 174, 81, 27121, 182, 27303),
`Apr 2013 to Mar 2014` = c(226, 1295, 12203, 12451, 234, 92, 26501, 193, 26694),
`Apr 2014 to Mar 2015` = c(260, 1696, 13836, 11025, 285, 121, 27223, 178, 27401),
`Apr 2015 to Mar 2016` = c(336, 2297, 16187, 11496, 309, 106, 30731, 196, 30927),
`Apr 2016 to Mar 2017` = c(338, 2918, 19455, 14329, 401, 169, 37610, 201, 37811),
`Apr 2017 to Mar 2018` = c(369, 3385, 21765, 19138, 436, 157, 45250, 265, 45515),
`Apr 2018 to Mar 2019` = c(409, 3954, 22821, 21226, 525, 157, 49092, 250, 49342),
`Apr 2019 to Mar 2020` = c(460, 4746, 22873, 22727, 646, 277, 51729, 253, 51982),
`Apr 2020 to Mar 2021` = c(459, 4790, 20589, 14842, 559, 210, 41449, 222, 41671),
`Apr 2021 to Mar 2022` = c(416, 5551, 22610, 15657, 694, 385, 45313, 257, 45570),
`Apr 2022 to Mar 2023` = c(415, 5801, 22169, 18787, 713, 298, 48183, 226, 48409),
`Apr 2023 to Mar 2024` = c(401, 5411, 22167, 21226, 751, 321, 50277, 233, 50510)
)
# Data for the second table (F4a) - Greater Manchester Police
data_f4a <- data.frame(
Selected_offences = c("Attempted murder", "Threats to kill",
"Assault with injury and assault with intent to cause serious harm",
"Robbery", "Rape", "Sexual assault",
"Total selected offences", "Homicide",
"Total selected offences including homicide"),
`Apr 2010 to Mar 2011` = c(23, 110, 812, 1061, 18, 8, 2032, 16, 2048),
`Apr 2011 to Mar 2012` = c(12, 80, 729, 888, 18, 1, 1728, 8, 1736),
`Apr 2012 to Mar 2013` = c(18, 84, 643, 818, 16, 7, 1586, 13, 1599),
`Apr 2013 to Mar 2014` = c(22, 84, 636, 859, 27, 5, 1633, 10, 1643),
`Apr 2014 to Mar 2015` = c(15, 154, 806, 735, 36, 7, 1753, 8, 1761),
`Apr 2015 to Mar 2016` = c(17, 135, 897, 696, 24, 14, 1783, 14, 1797),
`Apr 2016 to Mar 2017` = c(26, 111, 734, 730, 29, 13, 1643, 14, 1657),
`Apr 2017 to Mar 2018` = c(33, 117, 789, 947, 38, 11, 1935, 17, 1952),
`Apr 2018 to Mar 2019` = c(30, 240, 1168, 1641, 69, 12, 3160, 9, 3169),
`Apr 2019 to Mar 2020` = c(34, 189, 1215, 1692, 38, 8, 3176, 12, 3188),
`Apr 2020 to Mar 2021` = c(23, 256, 1382, 1346, 26, 10, 3043, 13, 3056),
`Apr 2021 to Mar 2022` = c(23, 359, 1748, 1467, 26, 15, 3638, 21, 3659),
`Apr 2022 to Mar 2023` = c(28, 344, 1498, 1257, 42, 18, 3187, 15, 3202)
)
# Combine the data by summing E&W excl GMP and GMP for each year except the last year
data_combined <- data_f3a
for (col in names(data_f3a)[2:(ncol(data_f3a)-1)]) {
data_combined[[col]] <- data_f3a[[col]] + data_f4a[[col]]
}
# Add the last year's E&W excl GMP data separately
data_combined <- data_combined %>%
mutate(`Apr 2023 to Mar 2024` = data_f3a$`Apr 2023 to Mar 2024`)
# Reshape the data for plotting
df_long <- data_combined %>%
pivot_longer(cols = -Selected_offences, names_to = "Year", values_to = "Count") %>%
mutate(Region = ifelse(Year == "Apr 2023 to Mar 2024", "E&W excl GMP (2023-2024)", "E&W incl GMP"))
# Create the visualisations
# Line plot to compare trends over the years
ggplot(df_long, aes(x = Year, y = Count, group = Selected_offences, color = Region)) +
geom_line(data = df_long %>% filter(Region == "E&W incl GMP"), aes(group = Region), linewidth = 1) +
geom_point(data = df_long %>% filter(Region == "E&W incl GMP"), size = 2) +
geom_point(data = df_long %>% filter(Region == "E&W excl GMP (2023-2024)"), size = 4, color = "red") +
facet_wrap(~ Selected_offences, scales = "free_y") +
theme() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(title = "Recorded Knife Crime Trends Over Time: England & Wales (Including Greater Manchester Police (GMP)), Last Year Excluding GMP, Apr 2010 - Mar 2024, Source Home Office.",
x = "Year",
y = "Number of Offences",
color = "Region")

Ethnic_group_England_and_Wales_Census_2011_2021 <- read_csv("Census_2011_2021.csv")
## Rows: 5 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Ethnic Group
## dbl (2): 2011 %, 2021 %
## num (2): 2011, 2021
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Pivot the data to long format for easier plotting
data_long <- Ethnic_group_England_and_Wales_Census_2011_2021 %>%
pivot_longer(cols = c(`2011`, `2021`), names_to = "Year", values_to = "Population")
# Create a bar plot with non-exponential y-axis labels
ggplot(data_long, aes(x = `Ethnic Group`, y = Population, fill = Year)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Ethnic Group Populations in England & Wales (2011 vs 2021)",
x = "Ethnic Group",
y = "Population",
fill = "Census Year") +
scale_y_continuous(labels = comma) + # Apply comma formatting to y-axis labels
theme() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

# Pivot the percentage columns to long format
data_percentage_long <- Ethnic_group_England_and_Wales_Census_2011_2021 %>%
pivot_longer(cols = c(`2011 %`, `2021 %`), names_to = "Year", values_to = "Percentage")
# Facet plot to show each ethnic group separately
ggplot(data_percentage_long, aes(x = Year, y = Percentage, group = 1)) +
geom_line(linewidth = 1.2) +
geom_point(size = 3) +
facet_wrap(~ `Ethnic Group`, scales = "free_y") +
labs(title = "Change in Ethnic Group Percentages by Group in England & Wales (2011 vs 2021)",
x = "Census Year",
y = "Percentage (%)") +
theme()

# Load the data
data_cL49V <- read.csv("data-cL49V.csv")
# Convert columns
data_cL49V <- data_cL49V %>%
rename(
Area = X.1,
`2021/22` = `X2021.22`,
`2022/23` = `X2022.23`,
`2023/24` = `X2023.24`,
Grand_Total = `Grand.Total`,
Population = Population,
Rate_per_100000 = `Rate.per.100.000`
)
# Ensure that Area column has unique values
data_cL49V$Area <- make.unique(as.character(data_cL49V$Area))
# Gather the year columns into key-value pairs
data_long <- data_cL49V %>%
gather(key = "Year", value = "Knives_Found", `2021/22`, `2022/23`, `2023/24`)
# Convert Year to a factor with levels in reverse chronological order
data_long$Year <- factor(data_long$Year, levels = rev(c("2021/22", "2022/23", "2023/24")))
# Split data into top 25 and bottom 25 based on Grand_Total
top_25 <- data_cL49V %>% arrange(desc(Grand_Total)) %>% head(25)
bottom_25 <- data_cL49V %>% arrange(Grand_Total) %>% head(25)
top_25_long <- top_25 %>%
gather(key = "Year", value = "Knives_Found", `2021/22`, `2022/23`, `2023/24`)
# Convert Year to a factor with levels in reverse chronological order for top 25
top_25_long$Year <- factor(top_25_long$Year, levels = rev(c("2021/22", "2022/23", "2023/24")))
bottom_25_long <- bottom_25 %>%
gather(key = "Year", value = "Knives_Found", `2021/22`, `2022/23`, `2023/24`)
# Convert Year to a factor with levels in reverse chronological order for bottom 25
bottom_25_long$Year <- factor(bottom_25_long$Year, levels = rev(c("2021/22", "2022/23", "2023/24")))
# Function to create stacked bar plot for Knives Found by Year
create_stacked_bar_plot <- function(data_long, title) {
ggplot(data_long, aes(x = Area, y = Knives_Found, fill = Year)) +
geom_bar(stat = "identity", position = "stack") +
coord_flip() +
labs(title = title, x = "Area", y = "Knives Found") +
theme()
}
# Create stacked bar plots for top 25 and bottom 25
stacked_bar_plot_top <- create_stacked_bar_plot(top_25_long, "Total No. of Weapons with a Blade or Point Found by Area (Top 25):2021-2024")
stacked_bar_plot_bottom <- create_stacked_bar_plot(bottom_25_long, "Total No. of Weapons with a Blade or Point Found by Area (BTM 25):2021-2024")
# Plot stacked bar plots for top 25 and bottom 25
print (stacked_bar_plot_top)

print (stacked_bar_plot_bottom)

# Create a table from worst to best excluding the first column (CSP.Code)
worst_to_best <- data_cL49V %>%
select(-CSP.Code) %>%
arrange(desc(Grand_Total))
# Load the "Bottom 9" dataset
Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Bot_9_Areas_by_Knife_Possession_Age_Ethnicity <- read_csv(
"Age_Ethnicity_Bot9.csv"
)
## Rows: 90 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): Local Authority District Name, Age Band, Sex, Asian, Black, Mixed, ...
## dbl (1): White
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Load the "Top 9" dataset
Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Top_9_Areas_by_Knife_Possession_Age_Ethnicity <- read_csv(
"Age_Ethnicity_Top9.csv"
)
## Rows: 90 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): Local Authority District Name, Age Band, Sex
## dbl (5): Asian, Black, Mixed, White, Other
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Convert columns in the "Bottom 9" dataset to numeric
Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Bot_9_Areas_by_Knife_Possession_Age_Ethnicity <-
Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Bot_9_Areas_by_Knife_Possession_Age_Ethnicity %>%
mutate(across(c(Asian, Black, Mixed, White), as.numeric)) # Remove "Other" as it doesn't exist in this dataset
## Warning: There were 3 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `across(c(Asian, Black, Mixed, White), as.numeric)`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 2 remaining warnings.
# Convert columns in the "Top 9" dataset to numeric
Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Top_9_Areas_by_Knife_Possession_Age_Ethnicity <-
Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Top_9_Areas_by_Knife_Possession_Age_Ethnicity %>%
mutate(across(c(Asian, Black, Mixed, White, Other), as.numeric))
# Reshape the data for the "Top 9" areas
top9_long_data <- Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Top_9_Areas_by_Knife_Possession_Age_Ethnicity %>%
pivot_longer(cols = c(Asian, Black, Mixed, White, Other),
names_to = "Ethnicity",
values_to = "Percentage")
# Reshape the data for the "Bottom 9" areas
bot9_long_data <- Ethnicity_Statistics_From_Administrative_Data_E_amp_W_2021_Bot_9_Areas_by_Knife_Possession_Age_Ethnicity %>%
pivot_longer(cols = c(Asian, Black, Mixed, White), # Only include columns present in the dataset
names_to = "Ethnicity",
values_to = "Percentage")
# Filter out any rows with NA in Percentage or Local Authority District Name for the bottom 9 dataset
bot9_long_data <- bot9_long_data %>%
filter(!is.na(Percentage) & !is.na(`Local Authority District Name`))
# Combine sexes into one plot
top9_long_data_combined <- top9_long_data %>%
group_by(`Local Authority District Name`, `Age Band`, Ethnicity) %>%
summarize(Percentage = mean(Percentage, na.rm = TRUE))
## `summarise()` has grouped output by 'Local Authority District Name', 'Age
## Band'. You can override using the `.groups` argument.
bot9_long_data_combined <- bot9_long_data %>%
group_by(`Local Authority District Name`, `Age Band`, Ethnicity) %>%
summarize(Percentage = mean(Percentage, na.rm = TRUE))
## `summarise()` has grouped output by 'Local Authority District Name', 'Age
## Band'. You can override using the `.groups` argument.
# Custom colour palette for ethnicity groups
ethnicity_colors <- c(
"Asian" = "#cc0033",
"Black" = "#56B4E9",
"Mixed" = "#666666",
"White" = "#339900",
"Other" = "#CC79A7"
)
# Create the faceted plot for the "Top 9" areas
ggplot(top9_long_data_combined, aes(x = `Age Band`, y = Percentage, fill = Ethnicity)) +
geom_bar(stat = "identity", position = "dodge") +
facet_wrap(~ `Local Authority District Name`, ncol = 3) +
scale_fill_manual(values = ethnicity_colors) +
labs(title = "Ethnicity Distribution by Age 2021 in the Top 9 Areas for Knife Possession 2021-2024 in England & Wales",
x = "Age Band", y = "Percentage",
fill = "Ethnicity") +
theme() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
strip.text = element_text(size = 10))

# Create the faceted plot for the "Bottom 9" areas, excluding NA district
ggplot(bot9_long_data_combined, aes(x = `Age Band`, y = Percentage, fill = Ethnicity)) +
geom_bar(stat = "identity", position = "dodge") +
facet_wrap(~ `Local Authority District Name`, ncol = 3) +
scale_fill_manual(values = ethnicity_colors) +
labs(title = "Ethnicity Distribution by Age 2021 in the BTM 9 Areas for Knife Possession 2021-2024 in England & Wales",
x = "Age Band", y = "Percentage",
fill = "Ethnicity") +
theme() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
strip.text = element_text(size = 10))

# Print the table
knitr::kable(worst_to_best, caption = "Table of Areas from Worst to Best based on Grand Total of Weapons with a Blade or Point Found")
Table of Areas from Worst to Best based on Grand Total of
Weapons with a Blade or Point Found
Birmingham |
1871 |
2174 |
1835 |
5880 |
1157603 |
507.9 |
Manchester |
620 |
759 |
670 |
2049 |
568996 |
360.1 |
Sandwell |
423 |
437 |
435 |
1295 |
344210 |
376.2 |
Coventry |
390 |
458 |
385 |
1233 |
355600 |
346.7 |
Nottingham |
364 |
415 |
410 |
1189 |
328513 |
361.9 |
Sheffield |
346 |
387 |
402 |
1135 |
566242 |
200.4 |
Crawley |
129 |
470 |
528 |
1127 |
119509 |
943.0 |
Leeds |
367 |
407 |
341 |
1115 |
822483 |
135.6 |
Wolverhampton |
316 |
395 |
355 |
1066 |
267651 |
398.3 |
Walsall |
324 |
336 |
310 |
970 |
286105 |
339.0 |
Salford |
237 |
356 |
281 |
874 |
278064 |
314.3 |
Dudley |
244 |
302 |
290 |
836 |
324969 |
257.3 |
Liverpool |
253 |
288 |
249 |
790 |
496770 |
159.0 |
Northampton |
214 |
282 |
227 |
723 |
240930 |
300.1 |
Southampton |
210 |
262 |
239 |
711 |
252689 |
281.4 |
Doncaster |
209 |
252 |
207 |
668 |
311027 |
214.8 |
Stoke-on-Trent |
160 |
232 |
269 |
661 |
259965 |
254.3 |
Bristol, City of |
169 |
208 |
255 |
632 |
479024 |
131.9 |
Bradford |
217 |
223 |
184 |
624 |
552644 |
112.9 |
Leicester |
194 |
182 |
230 |
606 |
373399 |
162.3 |
Blackpool |
158 |
221 |
226 |
605 |
141574 |
427.3 |
Bolton |
199 |
192 |
207 |
598 |
298903 |
200.1 |
Newcastle upon Tyne |
186 |
203 |
195 |
584 |
307565 |
189.9 |
Tameside |
212 |
211 |
159 |
582 |
232753 |
250.1 |
Portsmouth |
189 |
192 |
196 |
577 |
208420 |
276.8 |
Solihull |
181 |
207 |
179 |
567 |
217678 |
260.5 |
Plymouth |
190 |
186 |
189 |
565 |
266862 |
211.7 |
Rochdale |
212 |
187 |
165 |
564 |
226992 |
248.5 |
Westminster |
173 |
209 |
170 |
552 |
211365 |
261.2 |
Cornwall |
162 |
196 |
193 |
551 |
575413 |
95.8 |
Wigan |
146 |
198 |
197 |
541 |
334110 |
161.9 |
Derby |
179 |
193 |
160 |
532 |
263490 |
201.9 |
Brighton and Hove |
174 |
182 |
169 |
525 |
277965 |
188.9 |
Oldham |
156 |
189 |
179 |
524 |
243912 |
214.8 |
Kirklees |
158 |
195 |
148 |
501 |
437593 |
114.5 |
Cardiff |
170 |
170 |
154 |
494 |
372089 |
132.8 |
Preston |
133 |
187 |
164 |
484 |
151582 |
319.3 |
North Yorkshire |
132 |
179 |
166 |
477 |
623501 |
76.5 |
Rotherham |
156 |
149 |
163 |
468 |
268354 |
174.4 |
Croydon |
157 |
147 |
135 |
439 |
392224 |
111.9 |
Norwich |
116 |
150 |
157 |
423 |
144525 |
292.7 |
Luton |
118 |
169 |
134 |
421 |
226973 |
185.5 |
County Durham |
130 |
153 |
135 |
418 |
528127 |
79.1 |
Barnsley |
132 |
151 |
128 |
411 |
246482 |
166.7 |
North Hampshire |
125 |
138 |
139 |
402 |
389787 |
103.1 |
Lambeth |
167 |
139 |
92 |
398 |
316812 |
125.6 |
Middlesbrough |
134 |
142 |
116 |
392 |
148285 |
264.4 |
Somerset |
118 |
128 |
143 |
389 |
576852 |
67.4 |
Lewisham |
167 |
116 |
102 |
385 |
298653 |
128.9 |
Milton Keynes |
110 |
145 |
128 |
383 |
292180 |
131.1 |
Stockport |
125 |
137 |
117 |
379 |
297107 |
127.6 |
Medway |
120 |
120 |
132 |
372 |
282702 |
131.6 |
Stockton-on-Tees |
119 |
128 |
124 |
371 |
199966 |
185.5 |
Peterborough |
121 |
126 |
118 |
365 |
217705 |
167.7 |
North Worcestershire |
99 |
135 |
129 |
363 |
289536 |
125.4 |
Western Suffolk |
110 |
142 |
102 |
354 |
382228 |
92.6 |
Tower Hamlets |
124 |
130 |
98 |
352 |
325789 |
108.0 |
Southwark |
127 |
114 |
104 |
345 |
311913 |
110.6 |
Telford and Wrekin |
88 |
122 |
135 |
345 |
188871 |
182.7 |
Trafford |
122 |
113 |
109 |
344 |
236301 |
145.6 |
Kingston upon Hull, City of |
128 |
118 |
98 |
344 |
268852 |
128.0 |
South Warwickshire |
100 |
106 |
137 |
343 |
289741 |
118.4 |
South Worcester |
98 |
131 |
112 |
341 |
319680 |
106.7 |
Bury |
117 |
95 |
127 |
339 |
194606 |
174.2 |
Wiltshire |
100 |
125 |
111 |
336 |
515885 |
65.1 |
Wakefield |
123 |
108 |
99 |
330 |
357729 |
92.2 |
Greenwich |
131 |
106 |
83 |
320 |
291080 |
109.9 |
Blackburn with Darwen |
83 |
96 |
140 |
319 |
155762 |
204.8 |
Southend-on-Sea |
86 |
122 |
104 |
312 |
180915 |
172.5 |
Newham |
125 |
107 |
80 |
312 |
358645 |
87.0 |
Sunderland |
88 |
114 |
109 |
311 |
277354 |
112.1 |
Nuneaton and Bedworth |
87 |
111 |
107 |
305 |
135481 |
225.1 |
Swindon |
90 |
110 |
101 |
301 |
235657 |
127.7 |
Cheshire East |
62 |
116 |
122 |
300 |
406527 |
73.8 |
Basildon |
91 |
117 |
91 |
299 |
188848 |
158.3 |
South Nottinghamshire |
103 |
92 |
104 |
299 |
351425 |
85.1 |
Hackney |
113 |
100 |
82 |
295 |
261491 |
112.8 |
Ipswich |
80 |
107 |
94 |
281 |
139247 |
201.8 |
Haringey |
107 |
97 |
72 |
276 |
261811 |
105.4 |
Gateshead |
77 |
100 |
96 |
273 |
197722 |
138.1 |
Brent |
121 |
78 |
73 |
272 |
341221 |
79.7 |
Enfield |
110 |
93 |
65 |
268 |
327224 |
81.9 |
Cheshire West and Chester |
51 |
94 |
118 |
263 |
361694 |
72.7 |
Northumberland |
76 |
95 |
87 |
258 |
324362 |
79.5 |
Shropshire |
52 |
97 |
103 |
252 |
327178 |
77.0 |
Mansfield |
59 |
101 |
89 |
249 |
111117 |
224.1 |
Calderdale |
95 |
81 |
73 |
249 |
207699 |
119.9 |
Dartford and Gravesham |
81 |
90 |
76 |
247 |
225790 |
109.4 |
Gloucester |
57 |
89 |
98 |
244 |
133522 |
182.7 |
Great Yarmouth |
72 |
90 |
80 |
242 |
99862 |
242.3 |
Reading |
62 |
99 |
79 |
240 |
174820 |
137.3 |
Islington |
82 |
91 |
62 |
235 |
220373 |
106.6 |
Oxford |
67 |
78 |
90 |
235 |
163257 |
143.9 |
Cambridge |
82 |
78 |
74 |
234 |
146995 |
159.2 |
Lancaster |
67 |
76 |
91 |
234 |
144446 |
162.0 |
Kettering |
64 |
87 |
78 |
229 |
106875 |
214.3 |
Wirral |
85 |
75 |
67 |
227 |
322453 |
70.4 |
Exeter |
75 |
79 |
72 |
226 |
134939 |
167.5 |
Waltham Forest |
88 |
80 |
57 |
225 |
275887 |
81.6 |
Sefton |
86 |
68 |
69 |
223 |
281027 |
79.4 |
Torbay |
71 |
71 |
80 |
222 |
139479 |
159.2 |
Colchester |
63 |
69 |
89 |
221 |
194394 |
113.7 |
Camden |
94 |
69 |
58 |
221 |
218049 |
101.4 |
Ealing |
91 |
75 |
54 |
220 |
369937 |
59.5 |
Lincoln |
67 |
72 |
78 |
217 |
102545 |
211.6 |
Cwm Taf |
60 |
61 |
95 |
216 |
297901 |
72.5 |
North Tyneside |
69 |
62 |
83 |
214 |
210487 |
101.7 |
Swansea |
54 |
68 |
91 |
213 |
241282 |
88.3 |
Dorset |
64 |
68 |
79 |
211 |
433164 |
48.7 |
Havering |
64 |
74 |
72 |
210 |
264703 |
79.3 |
Bournemouth |
74 |
71 |
64 |
209 |
198162 |
105.5 |
North East Lincolnshire |
70 |
65 |
74 |
209 |
157754 |
132.5 |
Thanet |
71 |
76 |
60 |
207 |
140689 |
147.1 |
Wellingborough |
68 |
77 |
61 |
206 |
84406 |
244.1 |
King’s Lynn and West Norfolk |
53 |
65 |
87 |
205 |
155741 |
131.6 |
Slough |
51 |
72 |
81 |
204 |
159182 |
128.2 |
Barking and Dagenham |
69 |
66 |
67 |
202 |
219992 |
91.8 |
Eastbourne |
61 |
58 |
83 |
202 |
102247 |
197.6 |
City of York |
65 |
62 |
75 |
202 |
204551 |
98.8 |
North Somerset |
62 |
63 |
74 |
199 |
219145 |
90.8 |
Carlisle |
55 |
62 |
80 |
197 |
111418 |
176.8 |
Harlow |
52 |
71 |
74 |
197 |
94409 |
208.7 |
Bromley |
81 |
70 |
45 |
196 |
329578 |
59.5 |
Halton |
36 |
63 |
96 |
195 |
128964 |
151.2 |
Hounslow |
66 |
65 |
63 |
194 |
290488 |
66.8 |
Arun |
48 |
64 |
82 |
194 |
166366 |
116.6 |
Redbridge |
63 |
69 |
61 |
193 |
310911 |
62.1 |
Ashfield |
40 |
76 |
76 |
192 |
127179 |
151.0 |
Burnley |
52 |
67 |
70 |
189 |
95553 |
197.8 |
South Tyneside |
68 |
66 |
55 |
189 |
148667 |
127.1 |
St. Helens |
67 |
71 |
49 |
187 |
184728 |
101.2 |
Warrington |
30 |
73 |
81 |
184 |
211580 |
87.0 |
Redcar and Cleveland |
36 |
67 |
81 |
184 |
137175 |
134.1 |
Maidstone |
61 |
56 |
64 |
181 |
180428 |
100.3 |
Isle of Wight |
61 |
52 |
66 |
179 |
140794 |
127.1 |
Hastings |
65 |
64 |
50 |
179 |
90622 |
197.5 |
Thurrock |
65 |
55 |
58 |
178 |
176877 |
100.6 |
Corby |
58 |
62 |
57 |
177 |
76583 |
231.1 |
Denbighshire |
51 |
61 |
64 |
176 |
96558 |
182.3 |
Uttlesford |
31 |
68 |
76 |
175 |
92578 |
189.0 |
Hillingdon |
73 |
52 |
50 |
175 |
310681 |
56.3 |
Wandsworth |
68 |
63 |
44 |
175 |
329035 |
53.2 |
Canterbury |
52 |
59 |
61 |
172 |
157550 |
109.2 |
Bedford |
60 |
50 |
61 |
171 |
187466 |
91.2 |
Hammersmith and Fulham |
56 |
72 |
42 |
170 |
185238 |
91.8 |
Havant |
59 |
57 |
51 |
167 |
124854 |
133.8 |
Hartlepool |
46 |
51 |
68 |
165 |
93861 |
175.8 |
Barnet |
69 |
56 |
40 |
165 |
389101 |
42.4 |
Breckland |
52 |
66 |
47 |
165 |
143479 |
115.0 |
Darlington |
50 |
57 |
56 |
163 |
109469 |
148.9 |
Daventry and South Northamptonshire |
38 |
64 |
59 |
161 |
188083 |
85.6 |
Herefordshire, County of |
44 |
48 |
68 |
160 |
188719 |
84.8 |
Chelmsford |
40 |
64 |
55 |
159 |
183326 |
86.7 |
Chorley |
51 |
65 |
43 |
159 |
118624 |
134.0 |
South Devon and Dartmoor |
56 |
56 |
47 |
159 |
283954 |
56.0 |
South Ribble |
47 |
51 |
60 |
158 |
112166 |
140.9 |
Hyndburn |
30 |
65 |
60 |
155 |
83213 |
186.3 |
East and Mid Devon |
48 |
56 |
50 |
154 |
238286 |
64.6 |
Knowsley |
52 |
60 |
41 |
153 |
157103 |
97.4 |
Newport |
41 |
67 |
45 |
153 |
161506 |
94.7 |
South Gloucestershire |
50 |
41 |
61 |
152 |
294765 |
51.6 |
Huntingdonshire |
45 |
52 |
54 |
151 |
184052 |
82.0 |
New Forest |
39 |
49 |
62 |
150 |
175942 |
85.3 |
Tendring |
43 |
44 |
62 |
149 |
151451 |
98.4 |
Swale |
51 |
43 |
54 |
148 |
154619 |
95.7 |
Cherwell |
36 |
52 |
60 |
148 |
164155 |
90.2 |
Flintshire |
49 |
50 |
49 |
148 |
155319 |
95.3 |
Newcastle-under-Lyme |
41 |
44 |
62 |
147 |
125297 |
117.3 |
Worthing |
58 |
40 |
49 |
147 |
112044 |
131.2 |
Waveney |
31 |
59 |
52 |
142 |
116633 |
121.7 |
Pendle |
28 |
48 |
64 |
140 |
96110 |
145.7 |
North Lincolnshire |
44 |
45 |
50 |
139 |
170042 |
81.7 |
Bassetlaw |
40 |
53 |
45 |
138 |
120012 |
115.0 |
Barrow-In-Furness |
33 |
53 |
51 |
137 |
67347 |
203.4 |
Dover |
43 |
35 |
59 |
137 |
117473 |
116.6 |
Aylesbury Vale |
41 |
47 |
49 |
137 |
208101 |
65.8 |
Windsor and Maidenhead |
28 |
46 |
62 |
136 |
154738 |
87.9 |
Wycombe |
34 |
49 |
52 |
135 |
182368 |
74.0 |
Wrexham |
54 |
36 |
41 |
131 |
135394 |
96.8 |
Stafford |
21 |
52 |
57 |
130 |
138670 |
93.7 |
Conwy |
44 |
44 |
42 |
130 |
114290 |
113.7 |
East Riding of Yorkshire |
40 |
38 |
51 |
129 |
346309 |
37.2 |
Rugby |
35 |
52 |
42 |
129 |
116436 |
110.8 |
Cheltenham |
37 |
47 |
44 |
128 |
119434 |
107.2 |
Allerdale |
24 |
52 |
51 |
127 |
96555 |
131.5 |
Gosport |
33 |
52 |
42 |
127 |
82285 |
154.3 |
Test Valley |
40 |
46 |
41 |
127 |
132871 |
95.6 |
Wyre |
31 |
44 |
52 |
127 |
114809 |
110.6 |
Chichester |
33 |
39 |
55 |
127 |
126103 |
100.7 |
Kensington and Chelsea |
46 |
35 |
45 |
126 |
146154 |
86.2 |
Sutton |
50 |
44 |
32 |
126 |
210053 |
60.0 |
Bexley |
41 |
52 |
30 |
123 |
247835 |
49.6 |
West Lancashire |
22 |
55 |
45 |
122 |
119367 |
102.2 |
East Northamptonshire |
34 |
43 |
45 |
122 |
95544 |
127.7 |
Eastleigh |
46 |
43 |
30 |
119 |
138935 |
85.7 |
East Lindsey |
39 |
42 |
38 |
119 |
144415 |
82.4 |
South Kesteven |
41 |
42 |
36 |
119 |
144249 |
82.5 |
Braintree |
31 |
41 |
46 |
118 |
157681 |
74.8 |
Folkestone and Hythe |
39 |
36 |
42 |
117 |
110237 |
106.1 |
North Devon |
35 |
33 |
49 |
117 |
169140 |
69.2 |
Charnwood |
45 |
34 |
36 |
115 |
184748 |
62.2 |
Newark and Sherwood |
31 |
36 |
47 |
114 |
125089 |
91.1 |
Pembrokeshire |
32 |
46 |
36 |
114 |
124367 |
91.7 |
Poole |
30 |
42 |
41 |
113 |
153846 |
73.5 |
Watford |
39 |
39 |
35 |
113 |
103031 |
109.7 |
Merton |
44 |
32 |
37 |
113 |
214709 |
52.6 |
East Staffordshire |
31 |
33 |
49 |
113 |
125760 |
89.9 |
Carmarthenshire |
37 |
45 |
31 |
113 |
189117 |
59.8 |
Chesterfield |
38 |
33 |
41 |
112 |
104110 |
107.6 |
Gwynedd |
28 |
43 |
41 |
112 |
117591 |
95.2 |
Caerphilly |
32 |
34 |
42 |
108 |
176130 |
61.3 |
Ashford |
34 |
32 |
41 |
107 |
135610 |
78.9 |
Kingston upon Thames |
48 |
37 |
20 |
105 |
168302 |
62.4 |
Boston |
33 |
45 |
26 |
104 |
70806 |
146.9 |
Broadland |
19 |
45 |
40 |
104 |
133872 |
77.7 |
South Lakeland |
17 |
37 |
49 |
103 |
104807 |
98.3 |
Erewash |
32 |
35 |
36 |
103 |
113080 |
91.1 |
Tamworth |
18 |
35 |
50 |
103 |
79639 |
129.3 |
Bridgend |
32 |
41 |
29 |
102 |
146136 |
69.8 |
Dacorum |
46 |
32 |
23 |
101 |
156123 |
64.7 |
Central Bedfordshire |
37 |
31 |
33 |
101 |
301501 |
33.5 |
Harrow |
35 |
46 |
19 |
100 |
261185 |
38.3 |
Lichfield |
15 |
53 |
32 |
100 |
108352 |
92.3 |
Winchester |
25 |
40 |
32 |
97 |
130268 |
74.5 |
Vale of White Horse |
35 |
28 |
34 |
97 |
142116 |
68.3 |
Bath and North East Somerset |
22 |
29 |
45 |
96 |
195618 |
49.1 |
Wealden |
29 |
24 |
43 |
96 |
163012 |
58.9 |
South Norfolk |
28 |
28 |
39 |
95 |
144593 |
65.7 |
Stevenage |
34 |
36 |
23 |
93 |
89737 |
103.6 |
Cannock Chase |
14 |
35 |
43 |
92 |
101140 |
91.0 |
Spelthorne |
20 |
31 |
41 |
92 |
103551 |
88.8 |
Welwyn Hatfield |
40 |
27 |
24 |
91 |
120213 |
75.7 |
Mid Sussex |
24 |
29 |
36 |
89 |
154930 |
57.4 |
Epping Forest |
23 |
28 |
37 |
88 |
134989 |
65.2 |
Fareham |
33 |
20 |
35 |
88 |
114547 |
76.8 |
Powys |
21 |
36 |
31 |
88 |
133891 |
65.7 |
Amber Valley |
31 |
31 |
25 |
87 |
126944 |
68.5 |
City of London |
22 |
21 |
43 |
86 |
10847 |
792.8 |
Tunbridge Wells |
26 |
22 |
37 |
85 |
116028 |
73.3 |
Reigate and Banstead |
24 |
31 |
30 |
85 |
153629 |
55.3 |
Horsham |
21 |
25 |
39 |
85 |
148696 |
57.2 |
Neath Port Talbot |
35 |
23 |
27 |
85 |
142158 |
59.8 |
Fenland |
27 |
26 |
31 |
84 |
103035 |
81.5 |
West Berkshire |
22 |
26 |
35 |
83 |
162215 |
51.2 |
East Hampshire |
32 |
22 |
28 |
82 |
127319 |
64.4 |
Rossendale |
27 |
30 |
25 |
82 |
71169 |
115.2 |
Guildford |
20 |
28 |
33 |
81 |
145673 |
55.6 |
North Warwickshire |
24 |
32 |
25 |
81 |
65946 |
122.8 |
West Lindsey |
17 |
24 |
37 |
78 |
96817 |
80.6 |
Suffolk Coastal |
21 |
26 |
31 |
78 |
130447 |
59.8 |
North West Leicestershire |
31 |
21 |
24 |
76 |
107672 |
70.6 |
Vale of Glamorgan |
24 |
21 |
30 |
75 |
133492 |
56.2 |
Copeland |
23 |
19 |
32 |
74 |
67417 |
109.8 |
Wokingham |
20 |
17 |
37 |
74 |
180967 |
40.9 |
South Derbyshire |
17 |
29 |
25 |
71 |
111133 |
63.9 |
St Albans |
18 |
30 |
23 |
71 |
148358 |
47.9 |
Fylde |
27 |
17 |
26 |
70 |
83008 |
84.3 |
Isle of Anglesey |
23 |
24 |
23 |
70 |
69049 |
101.4 |
Tewkesbury |
24 |
19 |
26 |
69 |
97000 |
71.1 |
Tonbridge and Malling |
15 |
28 |
26 |
69 |
133661 |
51.6 |
Ceredigion |
22 |
27 |
20 |
69 |
71610 |
96.4 |
Sevenoaks |
15 |
27 |
26 |
68 |
121106 |
56.1 |
North Norfolk |
19 |
21 |
28 |
68 |
103227 |
65.9 |
Runnymede |
21 |
24 |
23 |
68 |
88524 |
76.8 |
South Holland |
22 |
21 |
24 |
67 |
96983 |
69.1 |
Forest of Dean |
22 |
18 |
26 |
66 |
87937 |
75.1 |
Broxbourne |
24 |
16 |
26 |
66 |
99103 |
66.6 |
Castle Point |
17 |
27 |
21 |
65 |
89731 |
72.4 |
South Cambridgeshire |
16 |
25 |
22 |
63 |
165633 |
38.0 |
Stroud |
21 |
16 |
26 |
63 |
123205 |
51.1 |
Lewes |
22 |
15 |
26 |
63 |
100677 |
62.6 |
South Oxfordshire |
14 |
25 |
24 |
63 |
151820 |
41.5 |
West Oxfordshire |
17 |
18 |
28 |
63 |
116928 |
53.9 |
Torfaen |
18 |
13 |
30 |
61 |
92860 |
65.7 |
Bracknell Forest |
19 |
18 |
23 |
60 |
126881 |
47.3 |
Bolsover |
21 |
18 |
20 |
59 |
81553 |
72.3 |
Hinckley and Bosworth |
22 |
19 |
18 |
59 |
114298 |
51.6 |
Rother |
22 |
13 |
24 |
59 |
94162 |
62.7 |
Hertsmere |
12 |
27 |
18 |
57 |
108106 |
52.7 |
North Hertfordshire |
27 |
17 |
13 |
57 |
134159 |
42.5 |
Richmond upon Thames |
30 |
13 |
14 |
57 |
194894 |
29.2 |
Staffordshire Moorlands |
15 |
16 |
26 |
57 |
95899 |
59.4 |
South Staffordshire |
13 |
22 |
21 |
56 |
111527 |
50.2 |
Rochford |
10 |
22 |
22 |
54 |
87216 |
61.9 |
Adur |
21 |
15 |
18 |
54 |
64688 |
83.5 |
Eden |
11 |
22 |
20 |
53 |
55489 |
95.5 |
High Peak |
18 |
16 |
18 |
52 |
91109 |
57.1 |
East Hertfordshire |
16 |
23 |
13 |
52 |
151635 |
34.3 |
Melton |
23 |
12 |
15 |
50 |
52433 |
95.4 |
Elmbridge |
21 |
13 |
15 |
49 |
140024 |
35.0 |
Woking |
17 |
17 |
15 |
49 |
104179 |
47.0 |
Blaenau Gwent |
18 |
16 |
14 |
48 |
67014 |
71.6 |
Epsom and Ewell |
15 |
16 |
14 |
45 |
81184 |
55.4 |
Derbyshire Dales |
16 |
9 |
19 |
44 |
71752 |
61.3 |
Waverley |
9 |
19 |
16 |
44 |
130063 |
33.8 |
Chiltern |
9 |
18 |
16 |
43 |
97702 |
44.0 |
Maldon |
12 |
14 |
16 |
42 |
67554 |
62.2 |
Three Rivers |
12 |
14 |
15 |
41 |
94123 |
43.6 |
North East Derbyshire |
13 |
12 |
14 |
39 |
103783 |
37.6 |
Cotswold |
9 |
14 |
16 |
39 |
91311 |
42.7 |
Blaby |
15 |
9 |
15 |
39 |
104182 |
37.4 |
Tandridge |
12 |
11 |
15 |
38 |
88707 |
42.8 |
North Kesteven |
11 |
14 |
12 |
37 |
119709 |
30.9 |
Brentwood |
12 |
14 |
10 |
36 |
77332 |
46.6 |
Harborough |
6 |
17 |
11 |
34 |
100481 |
33.8 |
East Cambridgeshire |
11 |
16 |
6 |
33 |
89394 |
36.9 |
Mole Valley |
11 |
10 |
12 |
33 |
87769 |
37.6 |
South Bucks |
10 |
10 |
13 |
33 |
72238 |
45.7 |
Ribble Valley |
5 |
12 |
14 |
31 |
63107 |
49.1 |
Monmouthshire |
10 |
8 |
12 |
30 |
93886 |
32.0 |
Surrey Heath |
10 |
5 |
13 |
28 |
91237 |
30.7 |
Oadby and Wigston |
9 |
8 |
8 |
25 |
58341 |
42.9 |
Rutland |
6 |
2 |
5 |
13 |
41151 |
31.6 |
Isles of Scilly |
0 |
1 |
2 |
3 |
2281 |
131.5 |