Import stock prices
stocks <- tq_get(c("NVDA", "SHOP" , "TTD"),
get = "stock.prices",
from = "2023-01-01")
stocks
## # A tibble: 1,257 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NVDA 2023-01-03 14.9 15.0 14.1 14.3 401277000 14.3
## 2 NVDA 2023-01-04 14.6 14.9 14.2 14.7 431324000 14.7
## 3 NVDA 2023-01-05 14.5 14.6 14.1 14.3 389168000 14.3
## 4 NVDA 2023-01-06 14.5 15.0 14.0 14.9 405044000 14.9
## 5 NVDA 2023-01-09 15.3 16.1 15.1 15.6 504231000 15.6
## 6 NVDA 2023-01-10 15.5 16.0 15.5 15.9 384101000 15.9
## 7 NVDA 2023-01-11 15.8 16.0 15.6 16.0 353285000 16.0
## 8 NVDA 2023-01-12 16.1 16.6 15.5 16.5 551409000 16.5
## 9 NVDA 2023-01-13 16.3 16.9 16.2 16.9 447287000 16.9
## 10 NVDA 2023-01-17 16.9 17.7 16.9 17.7 511102000 17.7
## # ℹ 1,247 more rows
Plot stock prices
stocks %>%
ggplot(aes(x = date, y = adjusted, color = symbol)) +
geom_line()

Import stock prices
stocks <- tq_get(c("GOOG", "UPST" , "AAPL"),
get = "stock.prices",
from = "2023-01-01")
stocks
## # A tibble: 1,257 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GOOG 2023-01-03 89.8 91.6 89.0 89.7 20738500 89.6
## 2 GOOG 2023-01-04 91.0 91.2 87.8 88.7 27046500 88.6
## 3 GOOG 2023-01-05 88.1 88.2 86.6 86.8 23136100 86.7
## 4 GOOG 2023-01-06 87.4 88.5 85.6 88.2 26612600 88.1
## 5 GOOG 2023-01-09 89.2 90.8 88.6 88.8 22996700 88.7
## 6 GOOG 2023-01-10 86.7 89.5 86.7 89.2 22855600 89.1
## 7 GOOG 2023-01-11 90.1 92.4 89.7 92.3 25998800 92.2
## 8 GOOG 2023-01-12 92.4 92.6 90.6 91.9 22754200 91.8
## 9 GOOG 2023-01-13 91.5 93.0 90.9 92.8 18630700 92.7
## 10 GOOG 2023-01-17 92.8 93.0 90.8 92.2 22935800 92.1
## # ℹ 1,247 more rows
Plot stock prices
stocks %>%
ggplot(aes(x = date, y = adjusted, color = symbol)) +
geom_line()
