Load packages

Full_data <- read_csv("Full_data_for_j.csv")
## New names:
## Rows: 259 Columns: 271
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (1): Group dbl (270): ...1, ID, B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5,
## B_IUS_6, B...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

Descriptive Statistics

By group

Intolerance of uncertainty

IUS_columns <- Full_data %>% 
  dplyr::select("A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total", "E_M3_IUS_total", "Group") 

IUS_columns_long <- IUS_columns %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total, E_M3_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")

summary_IUS <- IUS_columns_long %>% # calculating means and sds
  group_by(Group, Time) %>%
  summarise(
    mean_value = mean(IUS_Score, na.rm = TRUE),
    sd_value = sd(IUS_Score, na.rm = TRUE),
    .groups = 'drop') 

round_IUS <- summary_IUS %>% # rounding to 2 decimal places
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(round_IUS)
## # A tibble: 15 × 4
##    Group          Time             mean_value sd_value
##    <chr>          <chr>                 <dbl>    <dbl>
##  1 A_ECs          A_PRE_IUS_total        41.1     6.74
##  2 A_ECs          B_POST_IUS_total       40.8     9.19
##  3 A_ECs          C_W1_IUS_total         42.0     8.52
##  4 A_ECs          D_M1_IUS_total         43.4     8.08
##  5 A_ECs          E_M3_IUS_total         41.4     7.94
##  6 B_Controls     A_PRE_IUS_total        42.0     9.45
##  7 B_Controls     B_POST_IUS_total       38.2    10.7 
##  8 B_Controls     C_W1_IUS_total         40.2    10.5 
##  9 B_Controls     D_M1_IUS_total         40.5    10.9 
## 10 B_Controls     E_M3_IUS_total         39.8    10.5 
## 11 C_Intervention A_PRE_IUS_total        43.1     9.14
## 12 C_Intervention B_POST_IUS_total       36.8    11.1 
## 13 C_Intervention C_W1_IUS_total         38.8    10.1 
## 14 C_Intervention D_M1_IUS_total         38.4    10.3 
## 15 C_Intervention E_M3_IUS_total         40.1    10.1

Depression

PHQ_columns <- Full_data %>% 
  dplyr::select("A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total", "E_M3_PHQ_total", "Group") 

PHQ_columns_long <- PHQ_columns %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total, D_M1_PHQ_total, E_M3_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")

summary_PHQ <- PHQ_columns_long %>% # calculating means and sds
  group_by(Group, Time) %>%
  summarise(
    mean_value = mean(PHQ_Score, na.rm = TRUE),
    sd_value = sd(PHQ_Score, na.rm = TRUE),
    .groups = 'drop') 

round_PHQ <- summary_PHQ %>% # rounding to 2 decimal places
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(round_PHQ)
## # A tibble: 12 × 4
##    Group          Time            mean_value sd_value
##    <chr>          <chr>                <dbl>    <dbl>
##  1 A_ECs          A_PRE_PHQ_total       9.96     5.77
##  2 A_ECs          C_W1_PHQ_total        9.92     5.78
##  3 A_ECs          D_M1_PHQ_total       10.4      6.58
##  4 A_ECs          E_M3_PHQ_total       10.0      6.09
##  5 B_Controls     A_PRE_PHQ_total       9.44     6.16
##  6 B_Controls     C_W1_PHQ_total        8.6      6.13
##  7 B_Controls     D_M1_PHQ_total        8.15     6.27
##  8 B_Controls     E_M3_PHQ_total        8.84     6.12
##  9 C_Intervention A_PRE_PHQ_total      10.7      5.62
## 10 C_Intervention C_W1_PHQ_total        9.22     5.78
## 11 C_Intervention D_M1_PHQ_total        8.36     6.15
## 12 C_Intervention E_M3_PHQ_total        9.52     6

Anxiety

GAD_columns <- Full_data %>% 
  dplyr::select("A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total", "E_M3_GAD_total", "Group") 

GAD_columns_long <- GAD_columns %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total, D_M1_GAD_total, E_M3_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")

summary_GAD <- GAD_columns_long %>% # calculating means and sds
  group_by(Group, Time) %>%
  summarise(
    mean_value = mean(GAD_Score, na.rm = TRUE),
    sd_value = sd(GAD_Score, na.rm = TRUE),
    .groups = 'drop') 

round_GAD <- summary_GAD %>% # rounding to 2 decimal places
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(round_GAD)
## # A tibble: 12 × 4
##    Group          Time            mean_value sd_value
##    <chr>          <chr>                <dbl>    <dbl>
##  1 A_ECs          A_PRE_GAD_total       8.02     4.85
##  2 A_ECs          C_W1_GAD_total        8.38     5.25
##  3 A_ECs          D_M1_GAD_total        9.14     6.13
##  4 A_ECs          E_M3_GAD_total        9.13     5.99
##  5 B_Controls     A_PRE_GAD_total       8.49     5.79
##  6 B_Controls     C_W1_GAD_total        7.9      5.82
##  7 B_Controls     D_M1_GAD_total        7.34     5.9 
##  8 B_Controls     E_M3_GAD_total        7.85     6.05
##  9 C_Intervention A_PRE_GAD_total       9.28     5.47
## 10 C_Intervention C_W1_GAD_total        8.26     5.94
## 11 C_Intervention D_M1_GAD_total        7.6      5.78
## 12 C_Intervention E_M3_GAD_total        9.16     6.04

Growth mindsets

GM_columns <- Full_data %>% 
  dplyr::select("A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM", "E_M3_GM", "Group") 

GM_columns_long <- GM_columns %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM, C_W1_GM, D_M1_GM, E_M3_GM),
               names_to = "Time",
               values_to = "GM_Score")

summary_GM <- GM_columns_long %>% # calculating means and sds
  group_by(Group, Time) %>%
  summarise(
    mean_value = mean(GM_Score, na.rm = TRUE),
    sd_value = sd(GM_Score, na.rm = TRUE),
    .groups = 'drop') 

round_GM <- summary_GM %>% # rounding to 2 decimal places
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(round_GM)
## # A tibble: 15 × 4
##    Group          Time      mean_value sd_value
##    <chr>          <chr>          <dbl>    <dbl>
##  1 A_ECs          A_PRE_GM        4.26     1.4 
##  2 A_ECs          B_POST_GM       4.22     1.5 
##  3 A_ECs          C_W1_GM         4.33     1.58
##  4 A_ECs          D_M1_GM         4.32     1.38
##  5 A_ECs          E_M3_GM         4.25     1.64
##  6 B_Controls     A_PRE_GM        3.86     1.43
##  7 B_Controls     B_POST_GM       4.35     1.49
##  8 B_Controls     C_W1_GM         4.17     1.54
##  9 B_Controls     D_M1_GM         4.19     1.46
## 10 B_Controls     E_M3_GM         4.25     1.5 
## 11 C_Intervention A_PRE_GM        4.1      1.36
## 12 C_Intervention B_POST_GM       4.78     1.49
## 13 C_Intervention C_W1_GM         4.67     1.33
## 14 C_Intervention D_M1_GM         4.76     1.39
## 15 C_Intervention E_M3_GM         4.89     1.28

Functional impairment

FI_columns <- Full_data %>% 
  dplyr::select("A_PRE_FI_total", "C_W1_FI_total", "D_M1_FI_total", "E_M3_FI_total", "Group") 

FI_columns_long <- FI_columns %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total, D_M1_FI_total, E_M3_FI_total),
               names_to = "Time",
               values_to = "FI_Score")

summary_FI <- FI_columns_long %>% # calculating means and sds
  group_by(Group, Time) %>%
  summarise(
    mean_value = mean(FI_Score, na.rm = TRUE),
    sd_value = sd(FI_Score, na.rm = TRUE),
    .groups = 'drop') 

round_FI <- summary_FI %>% # rounding to 2 decimal places
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(round_FI)
## # A tibble: 12 × 4
##    Group          Time           mean_value sd_value
##    <chr>          <chr>               <dbl>    <dbl>
##  1 A_ECs          A_PRE_FI_total       9.86     3.65
##  2 A_ECs          C_W1_FI_total        9.98     4.01
##  3 A_ECs          D_M1_FI_total        9.73     3.9 
##  4 A_ECs          E_M3_FI_total        9.43     3.61
##  5 B_Controls     A_PRE_FI_total      10.0      4.12
##  6 B_Controls     C_W1_FI_total        9.87     4.12
##  7 B_Controls     D_M1_FI_total        9.37     4.4 
##  8 B_Controls     E_M3_FI_total        8.96     4.32
##  9 C_Intervention A_PRE_FI_total      10.5      3.91
## 10 C_Intervention C_W1_FI_total        9.5      3.77
## 11 C_Intervention D_M1_FI_total        9.29     4.04
## 12 C_Intervention E_M3_FI_total        9.22     3.78

Mood

NA_columns <- Full_data %>% 
  dplyr::select("A_PRE_negaff", "B_POST_negaff", "C_W1_negaff", "D_M1_negaff", "E_M3_negaff", "Group") 

NA_columns_long <- NA_columns %>%
  pivot_longer(cols = c(A_PRE_negaff, B_POST_negaff, C_W1_negaff, D_M1_negaff, E_M3_negaff),
               names_to = "Time",
               values_to = "NA_Score")

summary_NA <- NA_columns_long %>% # calculating means and sds
  group_by(Group, Time) %>%
  summarise(
    mean_value = mean(NA_Score, na.rm = TRUE),
    sd_value = sd(NA_Score, na.rm = TRUE),
    .groups = 'drop') 

round_NA <- summary_NA %>% # rounding to 2 decimal places
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(round_NA)
## # A tibble: 15 × 4
##    Group          Time          mean_value sd_value
##    <chr>          <chr>              <dbl>    <dbl>
##  1 A_ECs          A_PRE_negaff        40.3     39.1
##  2 A_ECs          B_POST_negaff       40.3     41.3
##  3 A_ECs          C_W1_negaff         25.6     40.7
##  4 A_ECs          D_M1_negaff         19.9     48.6
##  5 A_ECs          E_M3_negaff         17.2     45.7
##  6 B_Controls     A_PRE_negaff        37.3     44  
##  7 B_Controls     B_POST_negaff       57.3     34.8
##  8 B_Controls     C_W1_negaff         30.8     48.9
##  9 B_Controls     D_M1_negaff         30.3     49.4
## 10 B_Controls     E_M3_negaff         30.1     50.1
## 11 C_Intervention A_PRE_negaff        29.6     42.7
## 12 C_Intervention B_POST_negaff       58.7     34.0
## 13 C_Intervention C_W1_negaff         24.6     46.7
## 14 C_Intervention D_M1_negaff         23.1     47.2
## 15 C_Intervention E_M3_negaff         26.2     47.6

Whole sample

Intolerance of uncertainty

tsummary_IUS <- IUS_columns_long %>%
  group_by(Time) %>%
  summarise(mean_value = mean(IUS_Score, na.rm = TRUE),
            sd_value = sd(IUS_Score, na.rm = TRUE),
            .groups = 'drop') 

tround_IUS <- tsummary_IUS %>%
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(tround_IUS)
## # A tibble: 5 × 3
##   Time             mean_value sd_value
##   <chr>                 <dbl>    <dbl>
## 1 A_PRE_IUS_total        42.3     8.86
## 2 B_POST_IUS_total       38.1    10.7 
## 3 C_W1_IUS_total         40.0     9.99
## 4 D_M1_IUS_total         40.2    10.3 
## 5 E_M3_IUS_total         40.2     9.89

Depression

tsummary_PHQ <- PHQ_columns_long %>%
  group_by(Time) %>%
  summarise(mean_value = mean(PHQ_Score, na.rm = TRUE),
            sd_value = sd(PHQ_Score, na.rm = TRUE),
            .groups = 'drop') 

tround_PHQ <- tsummary_PHQ %>%
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(tround_PHQ)
## # A tibble: 4 × 3
##   Time            mean_value sd_value
##   <chr>                <dbl>    <dbl>
## 1 A_PRE_PHQ_total      10.0      5.88
## 2 C_W1_PHQ_total        9.1      5.92
## 3 D_M1_PHQ_total        8.65     6.31
## 4 E_M3_PHQ_total        9.31     6.06

Anxiety

tsummary_GAD <- GAD_columns_long %>%
  group_by(Time) %>%
  summarise(mean_value = mean(GAD_Score, na.rm = TRUE),
            sd_value = sd(GAD_Score, na.rm = TRUE),
            .groups = 'drop') 

tround_GAD <- tsummary_GAD %>%
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(tround_GAD)
## # A tibble: 4 × 3
##   Time            mean_value sd_value
##   <chr>                <dbl>    <dbl>
## 1 A_PRE_GAD_total       8.71     5.49
## 2 C_W1_GAD_total        8.14     5.75
## 3 D_M1_GAD_total        7.79     5.91
## 4 E_M3_GAD_total        8.57     6.04

Growth mindsets

tsummary_GM <- GM_columns_long %>%
  group_by(Time) %>%
  summarise(mean_value = mean(GM_Score, na.rm = TRUE),
            sd_value = sd(GM_Score, na.rm = TRUE),
            .groups = 'drop') 

tround_GM <- tsummary_GM %>%
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(tround_GM)
## # A tibble: 5 × 3
##   Time      mean_value sd_value
##   <chr>          <dbl>    <dbl>
## 1 A_PRE_GM        4.03     1.4 
## 2 B_POST_GM       4.49     1.51
## 3 C_W1_GM         4.4      1.48
## 4 D_M1_GM         4.44     1.44
## 5 E_M3_GM         4.49     1.48

Functional impairment

tsummary_FI <- FI_columns_long %>%
  group_by(Time) %>%
  summarise(mean_value = mean(FI_Score, na.rm = TRUE),
            sd_value = sd(FI_Score, na.rm = TRUE),
            .groups = 'drop') 

tround_FI <- tsummary_FI %>%
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(tround_FI)
## # A tibble: 4 × 3
##   Time           mean_value sd_value
##   <chr>               <dbl>    <dbl>
## 1 A_PRE_FI_total      10.2      3.94
## 2 C_W1_FI_total        9.75     3.95
## 3 D_M1_FI_total        9.41     4.15
## 4 E_M3_FI_total        9.14     3.98

Mood

tsummary_NA <- NA_columns_long %>%
  group_by(Time) %>%
  summarise(mean_value = mean(NA_Score, na.rm = TRUE),
            sd_value = sd(NA_Score, na.rm = TRUE),
            .groups = 'drop') 

tround_NA <- tsummary_NA %>%
  mutate(mean_value = round(mean_value, 2),
         sd_value = round(sd_value, 2))

print(tround_NA)
## # A tibble: 5 × 3
##   Time          mean_value sd_value
##   <chr>              <dbl>    <dbl>
## 1 A_PRE_negaff        34.8     42.6
## 2 B_POST_negaff       54.6     36.4
## 3 C_W1_negaff         27.4     46.5
## 4 D_M1_negaff         25.5     48.4
## 5 E_M3_negaff         26.3     48.4

Moderation - Frequentist statistics

Growth Mindsets

# Post
moderation_GM_Mood_BP <- lm(negaff_BP_change ~ Group*A_PRE_GM, data = Full_data)
anova(moderation_GM_Mood_BP)
## Analysis of Variance Table
## 
## Response: negaff_BP_change
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## Group            2  29097 14548.3 14.0609 1.625e-06 ***
## A_PRE_GM         1      0     0.0  0.0000    0.9988    
## Group:A_PRE_GM   2   1150   575.1  0.5558    0.5743    
## Residuals      252 260736  1034.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1 week
moderation_GM_Mood_1W <- lm(negaff_B1W_change ~ Group*A_PRE_GM, data = Full_data)
anova(moderation_GM_Mood_1W)
## Analysis of Variance Table
## 
## Response: negaff_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   2952  1476.0  0.6511 0.5224
## A_PRE_GM         1   1516  1515.6  0.6686 0.4143
## Group:A_PRE_GM   2    449   224.5  0.0990 0.9057
## Residuals      244 553135  2266.9
# 1 month
moderation_GM_Mood_1M <- lm(negaff_B1M_change ~ Group*A_PRE_GM, data = Full_data)
anova(moderation_GM_Mood_1M)
## Analysis of Variance Table
## 
## Response: negaff_B1M_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   7881  3940.5  1.6652 0.1915
## A_PRE_GM         1    904   904.4  0.3822 0.5371
## Group:A_PRE_GM   2   2246  1122.9  0.4745 0.6228
## Residuals      222 525329  2366.3
# 3 months
moderation_GM_Mood_3M <- lm(negaff_B3M_change ~ Group*A_PRE_GM, data = Full_data)
anova(moderation_GM_Mood_3M)
## Analysis of Variance Table
## 
## Response: negaff_B3M_change
##                 Df Sum Sq Mean Sq F value  Pr(>F)  
## Group            2  16030  8014.8  3.2114 0.04226 *
## A_PRE_GM         1     31    31.1  0.0124 0.91127  
## Group:A_PRE_GM   2   3619  1809.5  0.7250 0.48550  
## Residuals      213 531596  2495.8                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Repetitive negative thinking

# Post
moderation_RTQ_mood_BP <- lm(negaff_BP_change ~ Group*A_PRE_RTQ_n_total, data = Full_data)
anova(moderation_RTQ_mood_BP)
## Analysis of Variance Table
## 
## Response: negaff_BP_change
##                          Df Sum Sq Mean Sq F value    Pr(>F)    
## Group                     2  29097 14548.3 14.5373 1.059e-06 ***
## A_PRE_RTQ_n_total         1   9445  9445.1  9.4379  0.002359 ** 
## Group:A_PRE_RTQ_n_total   2    250   124.8  0.1247  0.882792    
## Residuals               252 252191  1000.8                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1 week
moderation_RTQ_mood_1W <- lm(negaff_B1W_change ~ Group*A_PRE_RTQ_n_total, data = Full_data)
anova(moderation_RTQ_mood_1W)
## Analysis of Variance Table
## 
## Response: negaff_B1W_change
##                          Df Sum Sq Mean Sq F value Pr(>F)
## Group                     2   2952 1476.00  0.6497 0.5231
## A_PRE_RTQ_n_total         1     44   44.33  0.0195 0.8890
## Group:A_PRE_RTQ_n_total   2    728  363.87  0.1602 0.8521
## Residuals               244 554328 2271.83
# 1 month
moderation_RTQ_mood_1M <- lm(negaff_B1M_change ~ Group*A_PRE_RTQ_n_total, data = Full_data)
anova(moderation_RTQ_mood_1M)
## Analysis of Variance Table
## 
## Response: negaff_B1M_change
##                          Df Sum Sq Mean Sq F value Pr(>F)
## Group                     2   7881  3940.5  1.6563 0.1932
## A_PRE_RTQ_n_total         1    216   215.7  0.0907 0.7636
## Group:A_PRE_RTQ_n_total   2    104    52.0  0.0219 0.9784
## Residuals               222 528159  2379.1
# 3 months
moderation_RTQ_mood_3M <- lm(negaff_B3M_change ~ Group*A_PRE_RTQ_n_total, data = Full_data)
anova(moderation_RTQ_mood_3M)
## Analysis of Variance Table
## 
## Response: negaff_B3M_change
##                          Df Sum Sq Mean Sq F value  Pr(>F)  
## Group                     2  16030  8014.8  3.2606 0.04029 *
## A_PRE_RTQ_n_total         1   1634  1633.5  0.6645 0.41587  
## Group:A_PRE_RTQ_n_total   2  10041  5020.7  2.0425 0.13223  
## Residuals               213 523572  2458.1                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reappraisal tendency

# Post
moderation_ERQ_mood_BP <- lm(negaff_BP_change ~ Group*A_PRE_ERQ_R_total, data = Full_data)
anova(moderation_ERQ_mood_BP)
## Analysis of Variance Table
## 
## Response: negaff_BP_change
##                          Df Sum Sq Mean Sq F value    Pr(>F)    
## Group                     2  29097 14548.3 14.1469 1.504e-06 ***
## A_PRE_ERQ_R_total         1   1459  1458.8  1.4185    0.2348    
## Group:A_PRE_ERQ_R_total   2   1276   638.1  0.6205    0.5385    
## Residuals               252 259151  1028.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1 week
moderation_ERQ_mood_1W <- lm(negaff_B1W_change ~ Group*A_PRE_ERQ_R_total, data = Full_data)
anova(moderation_ERQ_mood_1W)
## Analysis of Variance Table
## 
## Response: negaff_B1W_change
##                          Df Sum Sq Mean Sq F value Pr(>F)
## Group                     2   2952  1476.0  0.6614 0.5170
## A_PRE_ERQ_R_total         1    326   325.6  0.1459 0.7028
## Group:A_PRE_ERQ_R_total   2  10272  5135.8  2.3014 0.1023
## Residuals               244 544502  2231.6
# 1 month
moderation_ERQ_mood_1M <- lm(negaff_B1M_change ~ Group*A_PRE_ERQ_R_total, data = Full_data)
anova(moderation_ERQ_mood_1M)
## Analysis of Variance Table
## 
## Response: negaff_B1M_change
##                          Df Sum Sq Mean Sq F value Pr(>F)
## Group                     2   7881  3940.5  1.6676 0.1911
## A_PRE_ERQ_R_total         1    127   126.5  0.0535 0.8172
## Group:A_PRE_ERQ_R_total   2   3776  1888.0  0.7990 0.4511
## Residuals               222 524576  2363.0
# 3 months
moderation_ERQ_mood_3M <- lm(negaff_B3M_change ~ Group*A_PRE_ERQ_R_total, data = Full_data)
anova(moderation_ERQ_mood_3M)
## Analysis of Variance Table
## 
## Response: negaff_B3M_change
##                          Df Sum Sq Mean Sq F value  Pr(>F)  
## Group                     2  16030  8014.8  3.2218 0.04183 *
## A_PRE_ERQ_R_total         1     46    45.8  0.0184 0.89221  
## Group:A_PRE_ERQ_R_total   2   5332  2665.9  1.0717 0.34427  
## Residuals               213 529869  2487.6                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Moderation - Bayesian Statistics

Growth mindsets

full_lm = lm(negaff_BP_change ~ Group*A_PRE_GM, Full_data)
null_lm = lm(negaff_BP_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0004257513
full_lm = lm(negaff_B1W_change ~ Group*A_PRE_GM, Full_data)
null_lm = lm(negaff_B1W_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0003940627
full_lm = lm(negaff_B1M_change ~ Group*A_PRE_GM, Full_data)
null_lm = lm(negaff_B1M_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0005742467
full_lm = lm(negaff_B3M_change ~ Group*A_PRE_GM, Full_data)
null_lm = lm(negaff_B3M_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0006527475

Repetitive negative thinking

full_lm = lm(negaff_BP_change ~ Group*A_PRE_RTQ_n_total, Full_data)
null_lm = lm(negaff_BP_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.03132396
full_lm = lm(negaff_B1W_change ~ Group*A_PRE_RTQ_n_total, Full_data)
null_lm = lm(negaff_B1W_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0003010566
full_lm = lm(negaff_B1M_change ~ Group*A_PRE_RTQ_n_total, Full_data)
null_lm = lm(negaff_B1M_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0003112151
full_lm = lm(negaff_B3M_change ~ Group*A_PRE_RTQ_n_total, Full_data)
null_lm = lm(negaff_B3M_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.003452178

Reappraisal tendency

full_lm = lm(negaff_BP_change ~ Group*A_PRE_ERQ_R_total, Full_data)
null_lm = lm(negaff_BP_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0009348534
full_lm = lm(negaff_B1W_change ~ Group*A_PRE_ERQ_R_total, Full_data)
null_lm = lm(negaff_B1W_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.002815015
full_lm = lm(negaff_B1M_change ~ Group*A_PRE_ERQ_R_total, Full_data)
null_lm = lm(negaff_B1M_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0006761588
full_lm = lm(negaff_B3M_change ~ Group*A_PRE_ERQ_R_total, Full_data)
null_lm = lm(negaff_B3M_change ~ Group, Full_data)
BF_BIC = exp((BIC(null_lm) - BIC(full_lm))/2)
BF_BIC
## [1] 0.0009322721