Data soil exploration

We collected three soil samples at 2, 5 and 8 meters of the 10-m-length transect. We did so for 62 vegetation transects done during spring 2022 and 2024.

We measured the following soil physico-chemical variables from the soil sampling:

Dataset features explained

  • wet and dry weight

  • ph

  • weight and volume of stones (v_stones) within the cylinders. We have the weight just for the soil sampling of 2024.

  • bulk.density : Soil bulk density (\(\frac{g}{cm^{3}}\))

  • depth : Soil depth (cm)

  • soil compaction : just for the soil sampling of 2024.

  • HCL Test :

    • Limestone : In cold condition, generalized effervescence under HCl

    • Dolomite : In cold condition, little or non effervescence under HCL

      • Four categories from 0 to 3 indicating effervescence under HCL

        • 0 : No detectable reaction

        • 1 : Weak, a few bubbles or murmur of effervescence

        • 2 : Medium, bubbles in continuous layer

        • 3 : Vivid, several superimposed layers of bubbles

  • Munsell soil colour :

    • hue : basic color

    • Chroma : the strength or weakness of a colour

    • Value : the lightness or the darkness of the colour

    • description color : name of the color

  • om : Percentage (%) of organic matter calculated after being in muffle furnace at 550 °C during 4 hours.

  • N : Percentage (%) of nitrogen in a sample weighing ~ 35 mg. CHN analysis.

  • C : Percentage (%) of carbon (organic + inorganic) in a sample weighing ~ 35 mg. CHN analysis.

  • C:N ratios

For the statistical analysis we kept the variables that are presented in the following section.

Data summary of variable used in the statistics

Here we show the summary of the variables that were already averaged by replicates by transect. In brief, in the dataset we have 62 values of each soil variable.

Also we recorded litter, stones, rock and moss in the field along the vegetation transect.

##        ph         bulk_density      soil_depth      hcl_category   
##  Min.   :6.480   Min.   :0.5000   Min.   :  5.80   Min.   :0.0000  
##  1st Qu.:6.822   1st Qu.:0.9000   1st Qu.: 11.70   1st Qu.:0.0000  
##  Median :7.015   Median :1.0000   Median : 16.50   Median :0.7000  
##  Mean   :7.054   Mean   :0.9887   Mean   : 23.99   Mean   :0.6806  
##  3rd Qu.:7.265   3rd Qu.:1.1000   3rd Qu.: 25.45   3rd Qu.:1.0000  
##  Max.   :7.710   Max.   :1.6000   Max.   :101.00   Max.   :3.0000  
##      value             N               C_mg             om        
##  Min.   :2.000   Min.   :0.1930   Min.   :0.840   Min.   : 5.470  
##  1st Qu.:3.000   1st Qu.:0.3415   1st Qu.:1.480   1st Qu.: 9.153  
##  Median :3.000   Median :0.4535   Median :2.015   Median :11.521  
##  Mean   :3.319   Mean   :0.5059   Mean   :2.272   Mean   :12.691  
##  3rd Qu.:4.000   3rd Qu.:0.7000   3rd Qu.:2.868   3rd Qu.:17.019  
##  Max.   :5.700   Max.   :1.0970   Max.   :4.800   Max.   :26.191  
##     v_stones           C_N             lit             ston      
##  Min.   :  1.00   Min.   : 9.53   Min.   : 4.00   Min.   : 0.00  
##  1st Qu.:  7.30   1st Qu.:10.62   1st Qu.:14.00   1st Qu.:10.25  
##  Median : 10.85   Median :11.18   Median :17.00   Median :14.50  
##  Mean   : 24.72   Mean   :14.27   Mean   :18.94   Mean   :16.11  
##  3rd Qu.: 41.83   3rd Qu.:12.29   3rd Qu.:22.75   3rd Qu.:21.00  
##  Max.   :123.70   Max.   :53.33   Max.   :37.00   Max.   :42.00  
##       rock             moss       
##  Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 1.000   1st Qu.: 1.000  
##  Median : 4.000   Median : 3.500  
##  Mean   : 5.258   Mean   : 6.129  
##  3rd Qu.: 9.000   3rd Qu.:10.500  
##  Max.   :20.000   Max.   :24.000

Soil correlation matrix

Spearman correlation

##                 ph bulk_density soil_depth hcl_category value     N  C_mg    om
## ph               1                                                             
## bulk_density  0.42            1                                                
## soil_depth    0.13        -0.04          1                                     
## hcl_category  0.48         0.34       0.01            1                        
## value         0.27         0.44       0.17          0.1     1                  
## N            -0.26        -0.49      -0.37        -0.01  -0.7     1            
## C_mg          0.18        -0.19      -0.25         0.35 -0.24  0.62     1      
## om           -0.27        -0.53      -0.33        -0.06 -0.71  0.98  0.58     1
## v_stones     -0.03        -0.18      -0.32        -0.06 -0.03   0.2  0.22  0.16
## C_N           0.49         0.38       0.21         0.34  0.43  -0.5  0.13 -0.46
## lit          -0.04        -0.07      -0.09        -0.21 -0.02 -0.05 -0.02 -0.07
## ston          0.26         0.17      -0.25         0.37  0.02  0.18  0.13  0.17
## rock          -0.3        -0.38       0.02        -0.43 -0.02  0.11 -0.07  0.12
## moss         -0.32        -0.44      -0.04        -0.39 -0.01  0.04 -0.05  0.08
##              v_stones   C_N   lit  ston rock moss
## ph                                               
## bulk_density                                     
## soil_depth                                       
## hcl_category                                     
## value                                            
## N                                                
## C_mg                                             
## om                                               
## v_stones            1                            
## C_N             -0.03     1                      
## lit              0.03  0.03     1                
## ston             0.43  0.01 -0.34     1          
## rock             0.24 -0.26  0.05 -0.14    1     
## moss              0.2 -0.23  0.07  -0.3 0.26    1

Following criterion of |r| > 0.7 for avoid collinearity (Dormann et al. 2013), organic matter is highly correlated to Value and Nitrogen so we removed these two latter variables for the multivariate analysis.

PCA of soil variables

## $importance
## Importance of components:
##                          PC1   PC2    PC3    PC4     PC5     PC6     PC7
## Eigenvalue            3.1793 2.028 1.4468 1.2062 1.03903 0.87470 0.75712
## Proportion Explained  0.2649 0.169 0.1206 0.1005 0.08659 0.07289 0.06309
## Cumulative Proportion 0.2649 0.434 0.5545 0.6550 0.74162 0.81452 0.87761
##                           PC8     PC9    PC10    PC11     PC12
## Eigenvalue            0.53058 0.39662 0.27753 0.22912 0.034843
## Proportion Explained  0.04422 0.03305 0.02313 0.01909 0.002904
## Cumulative Proportion 0.92182 0.95488 0.97800 0.99710 1.000000

Principal component one explains 26.5%, component two explains 16.9%, and component three explains 12.1% of the variance.

Variables and principal components 1-2

Variables and principal components 1-2

Soil variables accros CSP commons

Commons and principal Components 1-2

Commons and principal Components 1-2

PERMANOVA

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = euclidean_dist_soil ~ common, data = inv_scores_c, permutations = 999)
##          Df SumOfSqs      R2      F Pr(>F)   
## common    2     8278 0.09785 3.1997  0.006 **
## Residual 59    76317 0.90215                 
## Total    61    84595 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $parent_call
## [1] "euclidean_dist_soil ~ common , strata = Null , permutations 999"
## 
## $C_vs_P
##          Df SumOfSqs      R2      F Pr(>F)   
## common    1     5518 0.12025 4.3741   0.01 **
## Residual 32    40371 0.87975                 
## Total    33    45890 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $C_vs_S
##          Df SumOfSqs      R2      F Pr(>F)   
## common    1     6501 0.09523 4.6313  0.007 **
## Residual 44    61764 0.90477                 
## Total    45    68265 1.00000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## $P_vs_S
##          Df SumOfSqs      R2      F Pr(>F)
## common    1      603 0.01181 0.5018  0.655
## Residual 42    50500 0.98819              
## Total    43    51103 1.00000              
## 
## attr(,"class")
## [1] "pwadstrata" "list"

Bonferroni adjustment of p-values

p_value = c(pairwise.c_2$C_vs_P$`Pr(>F)`[1],pairwise.c_2$C_vs_S$`Pr(>F)`[1],pairwise.c_2$P_vs_S$`Pr(>F)`[1])
p.adjust(p_value, method = "bonferroni")
## [1] 0.030 0.021 1.000

Significant statistical differences between Castril-Pontones and Castril-Santiago

Statistical differences by variable accros commons

Differences of organic matter (om) and soil depth across commons

## 
##  Kruskal-Wallis rank sum test
## 
## data:  om by common
## Kruskal-Wallis chi-squared = 7.5298, df = 2, p-value = 0.02317
## # A tibble: 3 × 9
##   .y.   group1 group2    n1    n2 statistic       p  p.adj p.adj.signif
## * <chr> <chr>  <chr>  <int> <int>     <dbl>   <dbl>  <dbl> <chr>       
## 1 om    C      P         18    16     1.71  0.0882  0.265  ns          
## 2 om    C      S         18    28     2.73  0.00636 0.0191 *           
## 3 om    P      S         16    28     0.761 0.447   1      ns

## 
##  Kruskal-Wallis rank sum test
## 
## data:  soil_depth by common
## Kruskal-Wallis chi-squared = 14.291, df = 2, p-value = 0.0007883

## # A tibble: 3 × 9
##   .y.        group1 group2    n1    n2 statistic        p   p.adj p.adj.signif
## * <chr>      <chr>  <chr>  <int> <int>     <dbl>    <dbl>   <dbl> <chr>       
## 1 soil_depth C      P         18    16    -3.48  0.000503 0.00151 **          
## 2 soil_depth C      S         18    28    -3.11  0.00186  0.00559 **          
## 3 soil_depth P      S         16    28     0.816 0.415    1       ns

No differences in the following variables

## 
##  Kruskal-Wallis rank sum test
## 
## data:  v_stones by common
## Kruskal-Wallis chi-squared = 0.86959, df = 2, p-value = 0.6474
## 
##  Kruskal-Wallis rank sum test
## 
## data:  ston by common
## Kruskal-Wallis chi-squared = 0.51873, df = 2, p-value = 0.7715
## 
##  Kruskal-Wallis rank sum test
## 
## data:  C by common
## Kruskal-Wallis chi-squared = 3.9798, df = 2, p-value = 0.1367
## 
##  Kruskal-Wallis rank sum test
## 
## data:  hcl_category by common
## Kruskal-Wallis chi-squared = 0.80646, df = 2, p-value = 0.6682
## 
##  Kruskal-Wallis rank sum test
## 
## data:  C_N by common
## Kruskal-Wallis chi-squared = 3.3949, df = 2, p-value = 0.1831
## 
##  Kruskal-Wallis rank sum test
## 
## data:  bulk_density by common
## Kruskal-Wallis chi-squared = 0.28394, df = 2, p-value = 0.8676
## 
##  Kruskal-Wallis rank sum test
## 
## data:  ph by common
## Kruskal-Wallis chi-squared = 3.4696, df = 2, p-value = 0.1764

Soil variables accros transhumance modalities

Transhumance modalities and principal Components 1-2

Transhumance modalities and principal Components 1-2

PERMANOVA

## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = euclidean_dist_soil ~ thr_cat2, data = inv_scores_c, permutations = 999)
##          Df SumOfSqs     R2      F Pr(>F)
## thr_cat2  2     2741 0.0324 0.9879  0.397
## Residual 59    81854 0.9676              
## Total    61    84595 1.0000

There are not significant statistical differences concerning transhumance modalities

Grazing indicators

Materials and methods

Field level grazing indicators

Indicators measured at the field level, i.e.nearby or along the 72 vegetation transects carried out during spring 2022 and 2023.

  • Plant Utilization Rates (PUR): We followed the method described by Ruiz-Mirazo et al. (2011) which proposes qualitative categories of plant utilization ranging from 0 to 5, with 3 referring to intermediate utilization. PUR have been measured nearby the vegetation transect in 25 individuals of dominant species, i.e. Helianthemum cinereum, Helianthemum oelandicum, Helianthemum appenninum, Thymus serpylloides, Koeleria vallesiana, Seseli montanum and Festuca segimonensis). Also we measured an overall Plant Utilisation Rate (PUR) of the vegetation pur_RA, which was measured at each meter of the 10m transect. For the statistical analysis we aggregated species with similar PUR. We generated two categories; low palatable species (PUR < 2) including Koeleria vallesiana, Seseli montanum and Festuca segimonensis, and high palatable species (PUR >4) including species of Helianthemum spp. and Thymus serpylloides.

  • pl_density : total number of plant contacts in the transects. Plant density allows evaluating grazing effects (Castañeda et al., 2023).

  • n_flower : total number of plant with flowers recorded in the transect. Flower abundance has been negatively associated with grazing pressure (Tadey et al. 2015).

  • bare : Bare ground recorded in the transect. Bare ground can be an indicator of herbivores’ activity and is positively correlated with runoff and soil erosion (Pyke et al. 2002).

  • dung : Dung measured at the beginning (dung_sp) and at the end (dung_au) of the grazing period. We employed quadrats of 50 x 50 cm to measure the dung amount. The quadrats were located adjacent to the 10m transect every 1 meter so carrying out 10 dung amount measurement. Dung can be a measure of grazing pressure on the transect scale (Jordan et al. 2022).

Individual grazing area level

  • Stocking Rate, which refers to the number of livestock per hectare over a specified time (Allen et al. 2011), is usually used to asses the effect of livestock on vegetation. Here we used animals*days per hectare (Scarnecchia 1985), which consider the number of days that the comarca is grazed. We gather such informations through the observations in field of Pau and Francisco and our observations during 2022 and 2023 fieldwork. Also, I check the transcriptions of the interviews done by me and Adrià during 2023.

\[\text{Stocking Rate} = \frac{Animals * Days}{Hectares}\]

However, this indicator may not be suitable in case of environmental and vegetation heterogeneity, also it does not take into account herding practices at the local scale (Genin and Hanafi 2010).

1. Which are the relationship between grazing indicators ?
Spearman correlation between indicators.

Correlation matrix:

##                    stoking_rate_2 pl_density pur_RA pur_high_palatable
## stoking_rate_2                  1                                     
## pl_density                  -0.12          1                          
## pur_RA                       0.27      -0.16      1                   
## pur_high_palatable           0.25       0.19   0.37                  1
## pur_low_palatable            0.06      -0.27   0.26              -0.51
## dung_au                      0.21      -0.02      0               0.17
## dung_sp                      0.01      -0.09   0.16               0.06
## n_flower                     -0.1       0.17  -0.08              -0.18
## bare                            0      -0.53   0.12               -0.2
##                    pur_low_palatable dung_au dung_sp n_flower bare
## stoking_rate_2                                                    
## pl_density                                                        
## pur_RA                                                            
## pur_high_palatable                                                
## pur_low_palatable                  1                              
## dung_au                        -0.25       1                      
## dung_sp                         0.12    0.42       1              
## n_flower                        0.03   -0.22   -0.05        1     
## bare                            0.25   -0.13    0.03    -0.12    1

The indicators are not highly correlated between them. As they are not highly correlated, we do not have the issue of multicollinearity so we can keep them all to the PCA analysis.

PCA of selected soil variables and grazing indicators

Selected soil variables : bulk density, C:N, organic matter, soil depth, volumes stones, HCL category

# do not subset db to keep rownames 
soil_ind_pca_1 <- rda(db_soil_ind, scale = TRUE) #scale=TRUE calls for a standardization of the variables
sum_2 = summary(soil_ind_pca_1) # Default scaling 2
sum_2$cont
## $importance
## Importance of components:
##                         PC1    PC2    PC3    PC4     PC5     PC6     PC7
## Eigenvalue            3.181 1.9810 1.9049 1.4354 1.24229 1.18814 0.92007
## Proportion Explained  0.212 0.1321 0.1270 0.0957 0.08282 0.07921 0.06134
## Cumulative Proportion 0.212 0.3441 0.4711 0.5668 0.64962 0.72883 0.79016
##                           PC8    PC9    PC10    PC11    PC12   PC13    PC14
## Eigenvalue            0.64369 0.6120 0.54609 0.42428 0.36763 0.2655 0.18688
## Proportion Explained  0.04291 0.0408 0.03641 0.02829 0.02451 0.0177 0.01246
## Cumulative Proportion 0.83308 0.8739 0.91028 0.93857 0.96308 0.9808 0.99324
##                           PC15
## Eigenvalue            0.101431
## Proportion Explained  0.006762
## Cumulative Proportion 1.000000

Principal component one explains 21.2%, component two explains 13.2%, and component three explains 12.7% of the variance.

Variables and principal components 1-2

Variables and principal components 1-2

Soil variables in red. Grazing indicators in blue.

Variables and principal components 1-3

Variables and principal components 1-3

Soil variables in red. Grazing indicators in blue.

distance-based Redundancy Analysis (db-RDA): Modelling of grazing indicators + soil variables and vegetation data

# similar of grazing_indicator rmd
# capscale() with raw (site by species) data (Borcard et al. 2018)
rda_soil_ind <- capscale(community_data_density_22_23.72_sin_cus_filt ~ bulk_density+ soil_depth + om+ C_N + v_stones +hcl_category +
                             stoking_rate_2 + pl_density + pur_RA + pur_high_palatable + pur_low_palatable + dung_au + dung_sp + n_flower + bare +
                              Condition(scores(as.matrix(coord_22_23))), data =  db_soil_ind, distance = "bray",add = "lingoes")

Variability explained by the first three axes.

##     CAP1     CAP2     CAP3 
## 6.715658 5.953246 3.834516

Variance Inflation Factor (VIF)

vif.cca(rda_soil_ind) # vif below 10 so collinearity is avoided. 
## scores(as.matrix(coord_22_23))x scores(as.matrix(coord_22_23))y 
##                        2.011135                        1.867628 
##                    bulk_density                      soil_depth 
##                        4.191210                        1.848894 
##                              om                             C_N 
##                        4.136944                        2.056068 
##                        v_stones                    hcl_category 
##                        1.743875                        1.937498 
##                  stoking_rate_2                      pl_density 
##                        1.349158                        2.113002 
##                          pur_RA              pur_high_palatable 
##                        3.057139                        3.138775 
##               pur_low_palatable                         dung_au 
##                        2.911266                        1.767354 
##                         dung_sp                        n_flower 
##                        1.723867                        1.650024 
##                            bare 
##                        2.084939

Test the significance of the model

anova(rda_soil_ind, by = "axis",permutations = how(nperm = 999)) 
## Permutation test for capscale under reduced model
## Forward tests for axes
## Permutation: free
## Number of permutations: 999
## 
## Model: capscale(formula = community_data_density_22_23.72_sin_cus_filt ~ bulk_density + soil_depth + om + C_N + v_stones + hcl_category + stoking_rate_2 + pl_density + pur_RA + pur_high_palatable + pur_low_palatable + dung_au + dung_sp + n_flower + bare + Condition(scores(as.matrix(coord_22_23))), data = db_soil_ind, distance = "bray", add = "lingoes")
##          Df SumOfSqs      F Pr(>F)    
## CAP1      1   1.3498 4.8710  0.002 ** 
## CAP2      1   1.1965 4.3180  0.001 ***
## CAP3      1   0.7707 2.7813  0.069 .  
## CAP4      1   0.5571 2.0106  0.566    
## CAP5      1   0.5051 1.8229  0.713    
## CAP6      1   0.4146 1.4963  0.961    
## CAP7      1   0.3448 1.2441  1.000    
## CAP8      1   0.3190 1.1512  1.000    
## CAP9      1   0.2719 0.9812  1.000    
## CAP10     1   0.2259 0.8152  1.000    
## CAP11     1   0.2179 0.7863  1.000    
## CAP12     1   0.1710 0.6172  1.000    
## CAP13     1   0.1653 0.5964  1.000    
## CAP14     1   0.1383 0.4990  1.000    
## CAP15     1   0.1251 0.4514  0.999    
## Residual 44  12.1926                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Species and variables

Figure: Species and variables

rda_soil_ind_sum_b = summary(rda_soil_ind,scaling = 1) 
#sites
rda_sites = rda_soil_ind_sum_b$sites[,1:3] %>% as.data.frame
rda_sites = rda_sites  %>% rownames_to_column("transect") %>% separate(transect,c("common"),sep = 1,remove = FALSE) 
rda_sites_c = left_join(rda_sites,sites_density_coding%>%select(transect,thr_cat2),by="transect")
Figure: Transect repartition across commons

Figure: Transect repartition across commons

Figure: Transect repartition across transhumance modalities

Figure: Transect repartition across transhumance modalities