#LIBRERIAS
library(plotly)
## Warning: package 'plotly' was built under R version 4.2.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(ggplot2)
library(ape)
## Warning: package 'ape' was built under R version 4.2.3
library(gstat)
## Warning: package 'gstat' was built under R version 4.2.3
library(distrEx)
## Warning: package 'distrEx' was built under R version 4.2.3
## Loading required package: distr
## Warning: package 'distr' was built under R version 4.2.3
## Loading required package: startupmsg
## Warning: package 'startupmsg' was built under R version 4.2.3
## Utilities for Start-Up Messages (version 0.9.6.1)
## For more information see ?"startupmsg", NEWS("startupmsg")
## Loading required package: sfsmisc
## Object Oriented Implementation of Distributions (version 2.9.3)
## Attention: Arithmetics on distribution objects are understood as operations on corresponding random variables (r.v.s); see distrARITH().
## Some functions from package 'stats' are intentionally masked ---see distrMASK().
## Note that global options are controlled by distroptions() ---c.f. ?"distroptions".
## For more information see ?"distr", NEWS("distr"), as well as
## http://distr.r-forge.r-project.org/
## Package "distrDoc" provides a vignette to this package as well as to several extension packages; try vignette("distr").
##
## Attaching package: 'distr'
## The following objects are masked from 'package:stats':
##
## df, qqplot, sd
## Extensions of Package 'distr' (version 2.9.2)
## Note: Packages "e1071", "moments", "fBasics" should be attached /before/ package "distrEx". See distrExMASK().Note: Extreme value distribution functionality has been moved to
## package "RobExtremes". See distrExMOVED().
## For more information see ?"distrEx", NEWS("distrEx"), as well as
## http://distr.r-forge.r-project.org/
## Package "distrDoc" provides a vignette to this package as well as to several related packages; try vignette("distr").
##
## Attaching package: 'distrEx'
## The following objects are masked from 'package:stats':
##
## IQR, mad, median, var
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.2.3
cc = 1000376863
ultimo_digito <- as.numeric(substr(cc, nchar(cc), nchar(cc)))
if (!is.na(ultimo_digito)) {
if (ultimo_digito == 1 || ultimo_digito == 2) {
a <- 6
b <- 24
} else if (ultimo_digito == 3 || ultimo_digito == 4) {
a <- 8
b <- 18
} else if (ultimo_digito == 5 || ultimo_digito == 4) {
a <- 12
b <- 12
} else if (ultimo_digito == 6 || ultimo_digito == 7) {
a <- 16
b <- 9
} else if (ultimo_digito == 8 || ultimo_digito == 9) {
a <- 18
b <- 8
} else {
a <- NA
b <- NA
}
} else {
a <- NA
b <- NA
}
mensaje <- paste("El tamaño de la grilla es", a, "x", b)
print(mensaje)
## [1] "El tamaño de la grilla es 8 x 18"
resp = runif(n = 144, min = 0.66, max = 0.86)
xy = expand.grid(x = 1:a, y = 1:b)
plot(xy,cex=0.5,pch=15)
# UNION DE LOS DATOS EN DATA FRAME
datos1 = data.frame(resp, x = xy$x, y = xy$y)
ggplot(datos1, aes(x = x, y = y, fill = resp)) +
geom_tile() +
theme_minimal() +
scale_fill_gradient(low = "green", high = "red")
m_dist=as.matrix(dist(cbind(datos1$x,datos1$y)))
m_resp=1/m_dist
diag(m_resp)<-0
w=m_resp
Moran.I(datos1$resp, w)
## $observed
## [1] -0.01472526
##
## $expected
## [1] -0.006993007
##
## $sd
## [1] 0.008379295
##
## $p.value
## [1] 0.3561216
NDVI_all = c()
for(i in seq(0.1,5,0.5)){
g.dummy = gstat(formula = z~1, locations = ~x+y,
dummy = T, beta = 0.5, model = vgm(psill = 0.0009,
range = i, model = 'Sph'), nmax = 20)
NDVI = predict(g.dummy, newdata = xy, nsim = 100)
NDVI_all = c(NDVI_all, NDVI)
}
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
## [using unconditional Gaussian simulation]
datos = as.data.frame(NDVI_all)
tablas <- list()
n_columnas <- 102
for (i in 1:10) {
start_col <- (i - 1) * n_columnas + 1
end_col <- i * n_columnas
sub_tabla <- datos[, start_col:end_col]
#calculo de la media
suma_columnas <- rowSums(sub_tabla[, 3:102], na.rm = TRUE)
media_columnas <- suma_columnas / 100
#añadir columna con la media al final de la tabla
sub_tabla <- cbind(sub_tabla, media = media_columnas)
tablas[[i]] <- sub_tabla
}
r1 = tablas[[1]]
r2 = tablas[[2]]
r3 = tablas[[3]]
r4 = tablas[[4]]
r5 = tablas[[5]]
r6 = tablas[[6]]
r7 = tablas[[7]]
r8 = tablas[[8]]
r9 = tablas[[9]]
r10 = tablas[[10]]
m1 <- Moran.I(r1$media, w)$observed
m2 <- Moran.I(r2$media, w)$observed
m3 <- Moran.I(r3$media, w)$observed
m4 <- Moran.I(r4$media, w)$observed
m5 <- Moran.I(r5$media, w)$observed
m6 <- Moran.I(r6$media, w)$observed
m7 <- Moran.I(r7$media, w)$observed
m8 <- Moran.I(r8$media, w)$observed
m9 <- Moran.I(r9$media, w)$observed
m10 <- Moran.I(r10$media, w)$observed
tablamoran = as.data.frame(rbind(m1,m2,m3,m4,m5,m6,m7,m8,m9,m10))
barplot(tablamoran$V1)
# Creación de tratamientos
tratamientos = sample(rep(paste0("T", 1:12), each = 12))
print(tratamientos)
## [1] "T10" "T11" "T5" "T1" "T7" "T10" "T12" "T2" "T3" "T4" "T8" "T8"
## [13] "T9" "T8" "T12" "T3" "T2" "T12" "T3" "T11" "T2" "T5" "T3" "T9"
## [25] "T11" "T7" "T4" "T5" "T3" "T11" "T11" "T9" "T5" "T5" "T12" "T12"
## [37] "T1" "T12" "T8" "T6" "T11" "T1" "T7" "T6" "T9" "T4" "T10" "T6"
## [49] "T2" "T9" "T12" "T4" "T10" "T4" "T1" "T2" "T6" "T6" "T9" "T11"
## [61] "T2" "T2" "T12" "T7" "T12" "T1" "T4" "T10" "T6" "T9" "T7" "T6"
## [73] "T5" "T8" "T10" "T12" "T10" "T4" "T12" "T8" "T3" "T10" "T5" "T7"
## [85] "T9" "T7" "T7" "T10" "T4" "T9" "T10" "T6" "T11" "T5" "T4" "T6"
## [97] "T11" "T3" "T7" "T1" "T8" "T4" "T2" "T6" "T5" "T5" "T3" "T10"
## [109] "T2" "T9" "T7" "T10" "T3" "T8" "T2" "T4" "T5" "T1" "T11" "T1"
## [121] "T4" "T11" "T11" "T9" "T1" "T12" "T8" "T1" "T2" "T8" "T7" "T8"
## [133] "T6" "T1" "T3" "T3" "T7" "T2" "T3" "T8" "T6" "T9" "T5" "T1"
# Añadir tratamientos a tabla de rango
r1 <- cbind(Tratamientos = tratamientos, r1)
ggplot(r1,aes(x=x,y=y,fill=sim1,label=tratamientos))+
geom_tile()+
geom_label(fill='white')+
theme_minimal()+
theme(legend.position = "none")
# crear una submuestra con columnas de interes
sbt1 <- r1[, 4:103]
#ANOVA para cada columna con respecto a los tratamientos
ranova1 <- lapply(sbt1, function(x) {
aov(x ~ r1[[1]])})
#Extraer el estadÃstico F de cada análisis de varianza
ef1 <- sapply(ranova1, function(x) {
summary(x)[[1]][1, "F value"]})
# Mostrar los estadÃsticos F
print(ef1)
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8
## 2.1388343 2.2944939 1.7490072 1.0834997 1.5940397 0.4727554 0.9183339 0.7686974
## sim9 sim10 sim11 sim12 sim13 sim14 sim15 sim16
## 1.2601671 1.1552079 0.5369350 0.2354232 0.7985152 2.4570446 1.1372988 0.5202359
## sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24
## 0.6189676 0.8853988 1.2049997 1.0166760 0.8774161 0.9481890 0.7962218 1.5618160
## sim25 sim26 sim27 sim28 sim29 sim30 sim31 sim32
## 0.7224322 1.1001901 1.2240019 1.5745246 1.0946127 0.7063647 0.6987952 1.2048476
## sim33 sim34 sim35 sim36 sim37 sim38 sim39 sim40
## 0.9048847 0.5470431 1.1205362 0.3367344 0.7570170 0.7561494 0.7708435 0.8002546
## sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48
## 2.2545901 1.1456483 0.6137046 0.7914772 1.1009087 0.7705305 0.4708138 0.9102053
## sim49 sim50 sim51 sim52 sim53 sim54 sim55 sim56
## 1.2116078 0.4561146 0.7881033 0.3385155 0.5779626 2.0376076 1.0039071 0.8048103
## sim57 sim58 sim59 sim60 sim61 sim62 sim63 sim64
## 0.7106881 1.1580947 0.5996784 1.1097986 0.8390127 1.6079663 0.8292246 0.4017533
## sim65 sim66 sim67 sim68 sim69 sim70 sim71 sim72
## 1.2547950 0.6171318 1.0121941 1.1856063 1.6391598 1.0367400 1.4290615 0.7317164
## sim73 sim74 sim75 sim76 sim77 sim78 sim79 sim80
## 1.4140651 1.2631775 1.4887665 0.8388356 0.5378556 1.0008751 0.8385581 0.9567163
## sim81 sim82 sim83 sim84 sim85 sim86 sim87 sim88
## 0.4658013 1.5376430 1.2682707 1.9181415 0.5394461 0.8096610 0.8115995 0.2937064
## sim89 sim90 sim91 sim92 sim93 sim94 sim95 sim96
## 1.9818996 1.1693243 1.1188562 0.9835255 1.4097381 0.8908283 1.4277795 1.1208333
## sim97 sim98 sim99 sim100
## 0.9001482 2.0597613 1.0825013 0.6159270
# DATOS UNIVERSALES (GRADOS DE LIBERTAD)
gl_numerador = 11
gl_denominador = 132
cuantil_95 <- qf(0.95, gl_numerador, gl_denominador)
hist(ef1,
main = "EstadÃsticos F Rango1",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef1), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r2 <- cbind(Tratamientos = tratamientos, r2)
sbt2 <- r2[, 4:103]
ranova2 <- lapply(sbt2, function(x) {
aov(x ~ r2[[1]])})
ef2 <- sapply(ranova2, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef2,
main = "EstadÃsticos F Rango2",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef2), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r3 <- cbind(Tratamientos = tratamientos, r3)
sbt3 <- r3[, 4:103]
ranova3 <- lapply(sbt3, function(x) {
aov(x ~ r3[[1]])})
ef3 <- sapply(ranova3, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef3,
main = "EstadÃsticos F Rango3",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef3), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r4 <- cbind(Tratamientos = tratamientos, r4)
sbt4 <- r4[, 4:103]
ranova4 <- lapply(sbt4, function(x) {
aov(x ~ r4[[1]])})
ef4 <- sapply(ranova4, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef4,
main = "EstadÃsticos F Rango4",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef4), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r5 <- cbind(Tratamientos = tratamientos, r5)
sbt5 <- r5[, 4:103]
ranova5 <- lapply(sbt5, function(x) {
aov(x ~ r5[[1]])})
ef5 <- sapply(ranova5, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef5,
main = "EstadÃsticos F Rango5",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef5), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r6 <- cbind(Tratamientos = tratamientos, r6)
sbt6 <- r6[, 4:103]
ranova6 <- lapply(sbt6, function(x) {
aov(x ~ r6[[1]])})
ef6 <- sapply(ranova6, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef6,
main = "EstadÃsticos F Rango6",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef6), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r7 <- cbind(Tratamientos = tratamientos, r7)
sbt7 <- r7[, 4:103]
ranova7 <- lapply(sbt7, function(x) {
aov(x ~ r7[[1]])})
ef7 <- sapply(ranova7, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef7,
main = "EstadÃsticos F Rango7",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef7), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r8 <- cbind(Tratamientos = tratamientos, r8)
sbt8 <- r8[, 4:103]
ranova8 <- lapply(sbt8, function(x) {
aov(x ~ r8[[1]])})
ef8 <- sapply(ranova8, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef8,
main = "EstadÃsticos F Rango8",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef8), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r9 <- cbind(Tratamientos = tratamientos, r9)
sbt9 <- r9[, 4:103]
ranova9 <- lapply(sbt9, function(x) {
aov(x ~ r9[[1]])})
ef9 <- sapply(ranova9, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef9,
main = "EstadÃsticos F Rango9",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef9), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
r10 <- cbind(Tratamientos = tratamientos, r10)
sbt10 <- r10[, 4:103]
ranova10 <- lapply(sbt10, function(x) {
aov(x ~ r10[[1]])})
ef10 <- sapply(ranova10, function(x) {
summary(x)[[1]][1, "F value"]})
hist(ef10,
main = "EstadÃsticos F Rango10",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
abline(v = mean(ef10), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
# Configurar la disposición de la ventana gráfica para 2 filas y 5 columnas
par(mfrow = c(2, 5))
# Suponiendo que tienes 10 conjuntos de datos ef1, ef2, ..., ef10 y cuantil_95_1, cuantil_95_2, ..., cuantil_95_10
for (i in 1:10) {
# Genera los nombres de las variables dinámicamente
ef <- get(paste0("ef", i))
# Crear el histograma
hist(ef,
main = paste("Rango", i),
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
# Añadir lÃneas verticales y curva de distribución
abline(v = mean(ef), col = "red", lwd = 2)
abline(v = cuantil_95, col = "red", lwd = 2, lty = 2)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE)
}
# Restablecer la disposición de la ventana gráfica
par(mfrow = c(1, 1))
# Filtrar los valores mayores o iguales al cuantil 95
ef1_95 <- ef1[ef1 >= cuantil_95]
# Crear el histograma solo con los valores filtrados
hist(ef1_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango1",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
# Añadir la curva de la distribución F solo para los valores mayores o iguales al cuantil 95
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef2_95 <- ef2[ef2 >= cuantil_95]
hist(ef2_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango2",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef3_95 <- ef3[ef3 >= cuantil_95]
hist(ef3_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango3",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef4_95 <- ef4[ef4 >= cuantil_95]
hist(ef4_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango4",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef5_95 <- ef5[ef5 >= cuantil_95]
hist(ef5_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango5",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef6_95 <- ef6[ef6 >= cuantil_95]
hist(ef6_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango6",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef7_95 <- ef7[ef7 >= cuantil_95]
hist(ef7_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango7",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef8_95 <- ef8[ef8 >= cuantil_95]
hist(ef8_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango8",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef9_95 <- ef9[ef9 >= cuantil_95]
hist(ef9_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango9",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
ef10_95 <- ef10[ef10 >= cuantil_95]
hist(ef10_95,
main = "Valores del Cuantil 95 del EstadÃstico F Rango10",
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
# Grafica solo cuantil 95
par(mfrow = c(2, 5))
for (i in 1:10) {
ef1_95 <- get(paste0("ef",i,"_95"))
hist(ef1_95,
main = paste("ef",i),
xlab = "Valores del EstadÃstico F",
ylab = "Frecuencia",
col = "blue",
border = "black",
breaks = 50)
curve(df(x, df1 = gl_numerador, df2 = gl_denominador),
col = "darkgreen",
lwd = 2,
add = TRUE,
from = cuantil_95)
}
par(mfrow = c(1, 1))
d1 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef1)
d2 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef2)
d3 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef3)
d4 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef4)
d5 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef5)
d6 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef6)
d7 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef7)
d8 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef8)
d9 = HellingerDist(Fd(df1 = gl_numerador , df2 = gl_denominador),e2 = ef9)
d10 = HellingerDist(Fd(df1 = gl_numerador, df2 = gl_denominador),e2 = ef10)
tabladistancias = as.data.frame(rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10))
barplot(tabladistancias$`Hellinger distance`)