#datafile and library needed
library(psych)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rstatix)
##
## Attaching package: 'rstatix'
##
## The following object is masked from 'package:stats':
##
## filter
library(ggpubr)
library(dplyr)
dataBBFem <-read.csv('/Users/misschelsita/Downloads/SYP Filtered Final.csv')
#centering variables
mean_X1 <- mean(dataBBFem$collegeTOTAL)
centered_X1 <- dataBBFem$collegeTOTAL - mean_X1
mean_X2 <- mean(dataBBFem$schoolexpTOTAL)
centered_X2 <- dataBBFem$schoolexpTOTAL - mean_X2
interaction_term <- centered_X1 * centered_X2
mean_X3 <- mean(dataBBFem$eisAFF)
centered_X3 <- dataBBFem$eisAFF - mean_X3
interaction_term1 <- centered_X1 * centered_X3
mean_X4 <- mean(dataBBFem$eisRES)
centered_X4 <- dataBBFem$eisRES - mean_X4
interaction_term2 <- centered_X1 * centered_X4
mean_X5 <- mean(dataBBFem$eisEXP)
centered_X5 <- dataBBFem$eisEXP - mean_X5
interaction_term3 <- centered_X1 * centered_X5
dataBBFem$age_c <- scale(dataBBFem$age, center = TRUE, scale = FALSE)
dataBBFem$gpa_c <- scale(dataBBFem$gpa, center = TRUE, scale = FALSE)
#model #1
##anxiety + college
premodel <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c+ centered_X1 , data = dataBBFem)
summary(premodel)
##
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c +
## centered_X1, data = dataBBFem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.960 -9.144 0.269 10.362 36.619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.6126 1.6960 27.484 < 2e-16 ***
## indInc 0.6367 0.9836 0.647 0.518
## dataBBFem$age_c -0.5787 0.3824 -1.513 0.131
## dataBBFem$gpa_c -0.9010 1.5920 -0.566 0.572
## centered_X1 1.5088 0.2168 6.958 2.93e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.89 on 254 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1785, Adjusted R-squared: 0.1656
## F-statistic: 13.8 on 4 and 254 DF, p-value: 3.377e-10
confint(premodel)
## 2.5 % 97.5 %
## (Intercept) 43.272584 49.9525962
## indInc -1.300350 2.5738062
## dataBBFem$age_c -1.331686 0.1743156
## dataBBFem$gpa_c -4.036198 2.2341172
## centered_X1 1.081701 1.9358042
##college + SRS
model <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X2 + interaction_term, data = dataBBFem)
summary(model)
##
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c +
## centered_X1 + centered_X2 + interaction_term, data = dataBBFem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.787 -8.141 0.309 9.469 36.331
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.44507 1.69521 27.988 < 2e-16 ***
## indInc 0.19549 0.98389 0.199 0.84267
## dataBBFem$age_c -0.60612 0.37827 -1.602 0.11034
## dataBBFem$gpa_c -0.25757 1.58483 -0.163 0.87102
## centered_X1 1.43713 0.21582 6.659 1.72e-10 ***
## centered_X2 -0.34795 0.13358 -2.605 0.00974 **
## interaction_term 0.05441 0.03232 1.683 0.09353 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.68 on 252 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.2073, Adjusted R-squared: 0.1885
## F-statistic: 10.99 on 6 and 252 DF, p-value: 7.16e-11
confint(model)
## 2.5 % 97.5 %
## (Intercept) 44.10647803 50.78366247
## indInc -1.74221422 2.13318622
## dataBBFem$age_c -1.35110018 0.13886088
## dataBBFem$gpa_c -3.37876664 2.86361978
## centered_X1 1.01208717 1.86218253
## centered_X2 -0.61102734 -0.08486845
## interaction_term -0.00924494 0.11807404
##college + eisAFF
model_2 <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X3 + interaction_term1, data = dataBBFem)
summary(model_2)
##
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c +
## centered_X1 + centered_X3 + interaction_term1, data = dataBBFem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.735 -9.202 0.225 10.272 37.880
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.72640 1.69176 27.620 < 2e-16 ***
## indInc 0.55712 0.98039 0.568 0.5704
## dataBBFem$age_c -0.52497 0.38119 -1.377 0.1697
## dataBBFem$gpa_c -1.16068 1.59023 -0.730 0.4661
## centered_X1 1.41697 0.22218 6.377 8.54e-10 ***
## centered_X3 -0.95406 0.48880 -1.952 0.0521 .
## interaction_term1 0.01313 0.11139 0.118 0.9062
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.81 on 252 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1934, Adjusted R-squared: 0.1742
## F-statistic: 10.07 on 6 and 252 DF, p-value: 5.607e-10
confint(model_2)
## 2.5 % 97.5 %
## (Intercept) 43.3946013 50.05819251
## indInc -1.3736768 2.48792323
## dataBBFem$age_c -1.2756881 0.22575687
## dataBBFem$gpa_c -4.2925188 1.97115696
## centered_X1 0.9793999 1.85454600
## centered_X3 -1.9167223 0.00860196
## interaction_term1 -0.2062417 0.23250913
##college + eisRES
model_3 <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X4 + interaction_term2, data = dataBBFem)
summary(model_3)
##
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c +
## centered_X1 + centered_X4 + interaction_term2, data = dataBBFem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.034 -9.649 0.406 10.425 34.497
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.69570 1.69347 27.574 < 2e-16 ***
## indInc 0.60982 0.98201 0.621 0.535
## dataBBFem$age_c -0.51142 0.38742 -1.320 0.188
## dataBBFem$gpa_c -0.98116 1.59476 -0.615 0.539
## centered_X1 1.56175 0.22020 7.093 1.33e-11 ***
## centered_X4 -0.44800 0.35262 -1.270 0.205
## interaction_term2 -0.10520 0.07888 -1.334 0.184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.86 on 252 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1881, Adjusted R-squared: 0.1688
## F-statistic: 9.731 on 6 and 252 DF, p-value: 1.216e-09
confint(model_3)
## 2.5 % 97.5 %
## (Intercept) 43.360547 50.03084375
## indInc -1.324179 2.54382349
## dataBBFem$age_c -1.274423 0.25157555
## dataBBFem$gpa_c -4.121912 2.15959689
## centered_X1 1.128095 1.99540953
## centered_X4 -1.142457 0.24646444
## interaction_term2 -0.260558 0.05015363
##college + eisEXP
model_4 <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X5 + interaction_term3, data = dataBBFem)
summary(model_4)
##
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c +
## centered_X1 + centered_X5 + interaction_term3, data = dataBBFem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -50.244 -9.304 0.029 10.567 37.017
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.60637 1.70226 27.379 < 2e-16 ***
## indInc 0.63391 0.98707 0.642 0.521
## dataBBFem$age_c -0.56959 0.38659 -1.473 0.142
## dataBBFem$gpa_c -0.96922 1.60155 -0.605 0.546
## centered_X1 1.49224 0.21916 6.809 7.16e-11 ***
## centered_X5 0.01943 0.18741 0.104 0.917
## interaction_term3 0.02627 0.04243 0.619 0.536
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.94 on 252 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1798, Adjusted R-squared: 0.1602
## F-statistic: 9.205 on 6 and 252 DF, p-value: 4.04e-09
confint(model_4)
## 2.5 % 97.5 %
## (Intercept) 43.25389441 49.9588501
## indInc -1.31004145 2.5778665
## dataBBFem$age_c -1.33094321 0.1917592
## dataBBFem$gpa_c -4.12335444 2.1849176
## centered_X1 1.06062667 1.9238451
## centered_X5 -0.34965269 0.3885176
## interaction_term3 -0.05729551 0.1098439