#datafile and library needed

library(psych)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()   masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rstatix)
## 
## Attaching package: 'rstatix'
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(ggpubr)
library(dplyr)

dataBBFem <-read.csv('/Users/misschelsita/Downloads/SYP Filtered Final.csv')

#centering variables

mean_X1 <- mean(dataBBFem$collegeTOTAL)
centered_X1 <- dataBBFem$collegeTOTAL - mean_X1


mean_X2 <- mean(dataBBFem$schoolexpTOTAL)
centered_X2 <- dataBBFem$schoolexpTOTAL - mean_X2
interaction_term <- centered_X1 * centered_X2

mean_X3 <- mean(dataBBFem$eisAFF)
centered_X3 <- dataBBFem$eisAFF - mean_X3
interaction_term1 <- centered_X1 * centered_X3

mean_X4 <- mean(dataBBFem$eisRES)
centered_X4 <- dataBBFem$eisRES - mean_X4
interaction_term2 <- centered_X1 * centered_X4

mean_X5 <- mean(dataBBFem$eisEXP)
centered_X5 <- dataBBFem$eisEXP - mean_X5
interaction_term3 <- centered_X1 * centered_X5

dataBBFem$age_c <- scale(dataBBFem$age, center = TRUE, scale = FALSE)
dataBBFem$gpa_c <- scale(dataBBFem$gpa, center = TRUE, scale = FALSE)

#model #1

##anxiety + college
premodel <- lm(TOTALanxiety ~  indInc + dataBBFem$age_c + dataBBFem$gpa_c+ centered_X1 , data = dataBBFem)
summary(premodel)
## 
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + 
##     centered_X1, data = dataBBFem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -49.960  -9.144   0.269  10.362  36.619 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      46.6126     1.6960  27.484  < 2e-16 ***
## indInc            0.6367     0.9836   0.647    0.518    
## dataBBFem$age_c  -0.5787     0.3824  -1.513    0.131    
## dataBBFem$gpa_c  -0.9010     1.5920  -0.566    0.572    
## centered_X1       1.5088     0.2168   6.958 2.93e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.89 on 254 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1785, Adjusted R-squared:  0.1656 
## F-statistic:  13.8 on 4 and 254 DF,  p-value: 3.377e-10
confint(premodel) 
##                     2.5 %     97.5 %
## (Intercept)     43.272584 49.9525962
## indInc          -1.300350  2.5738062
## dataBBFem$age_c -1.331686  0.1743156
## dataBBFem$gpa_c -4.036198  2.2341172
## centered_X1      1.081701  1.9358042
##college + SRS
model <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X2 + interaction_term, data = dataBBFem)
summary(model)
## 
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + 
##     centered_X1 + centered_X2 + interaction_term, data = dataBBFem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.787  -8.141   0.309   9.469  36.331 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      47.44507    1.69521  27.988  < 2e-16 ***
## indInc            0.19549    0.98389   0.199  0.84267    
## dataBBFem$age_c  -0.60612    0.37827  -1.602  0.11034    
## dataBBFem$gpa_c  -0.25757    1.58483  -0.163  0.87102    
## centered_X1       1.43713    0.21582   6.659 1.72e-10 ***
## centered_X2      -0.34795    0.13358  -2.605  0.00974 ** 
## interaction_term  0.05441    0.03232   1.683  0.09353 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.68 on 252 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.2073, Adjusted R-squared:  0.1885 
## F-statistic: 10.99 on 6 and 252 DF,  p-value: 7.16e-11
confint(model) 
##                        2.5 %      97.5 %
## (Intercept)      44.10647803 50.78366247
## indInc           -1.74221422  2.13318622
## dataBBFem$age_c  -1.35110018  0.13886088
## dataBBFem$gpa_c  -3.37876664  2.86361978
## centered_X1       1.01208717  1.86218253
## centered_X2      -0.61102734 -0.08486845
## interaction_term -0.00924494  0.11807404
##college + eisAFF
model_2 <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X3 + interaction_term1, data = dataBBFem)
summary(model_2)
## 
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + 
##     centered_X1 + centered_X3 + interaction_term1, data = dataBBFem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.735  -9.202   0.225  10.272  37.880 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       46.72640    1.69176  27.620  < 2e-16 ***
## indInc             0.55712    0.98039   0.568   0.5704    
## dataBBFem$age_c   -0.52497    0.38119  -1.377   0.1697    
## dataBBFem$gpa_c   -1.16068    1.59023  -0.730   0.4661    
## centered_X1        1.41697    0.22218   6.377 8.54e-10 ***
## centered_X3       -0.95406    0.48880  -1.952   0.0521 .  
## interaction_term1  0.01313    0.11139   0.118   0.9062    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.81 on 252 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1934, Adjusted R-squared:  0.1742 
## F-statistic: 10.07 on 6 and 252 DF,  p-value: 5.607e-10
confint(model_2) 
##                        2.5 %      97.5 %
## (Intercept)       43.3946013 50.05819251
## indInc            -1.3736768  2.48792323
## dataBBFem$age_c   -1.2756881  0.22575687
## dataBBFem$gpa_c   -4.2925188  1.97115696
## centered_X1        0.9793999  1.85454600
## centered_X3       -1.9167223  0.00860196
## interaction_term1 -0.2062417  0.23250913
##college + eisRES
model_3 <- lm(TOTALanxiety ~  indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X4 + interaction_term2, data = dataBBFem)
summary(model_3)
## 
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + 
##     centered_X1 + centered_X4 + interaction_term2, data = dataBBFem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.034  -9.649   0.406  10.425  34.497 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       46.69570    1.69347  27.574  < 2e-16 ***
## indInc             0.60982    0.98201   0.621    0.535    
## dataBBFem$age_c   -0.51142    0.38742  -1.320    0.188    
## dataBBFem$gpa_c   -0.98116    1.59476  -0.615    0.539    
## centered_X1        1.56175    0.22020   7.093 1.33e-11 ***
## centered_X4       -0.44800    0.35262  -1.270    0.205    
## interaction_term2 -0.10520    0.07888  -1.334    0.184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.86 on 252 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1881, Adjusted R-squared:  0.1688 
## F-statistic: 9.731 on 6 and 252 DF,  p-value: 1.216e-09
confint(model_3) 
##                       2.5 %      97.5 %
## (Intercept)       43.360547 50.03084375
## indInc            -1.324179  2.54382349
## dataBBFem$age_c   -1.274423  0.25157555
## dataBBFem$gpa_c   -4.121912  2.15959689
## centered_X1        1.128095  1.99540953
## centered_X4       -1.142457  0.24646444
## interaction_term2 -0.260558  0.05015363
##college + eisEXP
model_4 <- lm(TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + centered_X1 + centered_X5 + interaction_term3, data = dataBBFem)
summary(model_4)
## 
## Call:
## lm(formula = TOTALanxiety ~ indInc + dataBBFem$age_c + dataBBFem$gpa_c + 
##     centered_X1 + centered_X5 + interaction_term3, data = dataBBFem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.244  -9.304   0.029  10.567  37.017 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       46.60637    1.70226  27.379  < 2e-16 ***
## indInc             0.63391    0.98707   0.642    0.521    
## dataBBFem$age_c   -0.56959    0.38659  -1.473    0.142    
## dataBBFem$gpa_c   -0.96922    1.60155  -0.605    0.546    
## centered_X1        1.49224    0.21916   6.809 7.16e-11 ***
## centered_X5        0.01943    0.18741   0.104    0.917    
## interaction_term3  0.02627    0.04243   0.619    0.536    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.94 on 252 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1798, Adjusted R-squared:  0.1602 
## F-statistic: 9.205 on 6 and 252 DF,  p-value: 4.04e-09
confint(model_4) 
##                         2.5 %     97.5 %
## (Intercept)       43.25389441 49.9588501
## indInc            -1.31004145  2.5778665
## dataBBFem$age_c   -1.33094321  0.1917592
## dataBBFem$gpa_c   -4.12335444  2.1849176
## centered_X1        1.06062667  1.9238451
## centered_X5       -0.34965269  0.3885176
## interaction_term3 -0.05729551  0.1098439