Letter | n | mean | sd | cor:flanker | cor:Dot_count | cor:run_dot | cor:set_shift |
---|---|---|---|---|---|---|---|
word_f | 294 | 16.099 | 4.626 | 0.111 | 0.155 | 0.202 | 0.124 |
word_l | 435 | 15.309 | 4.199 | 0.057 | 0.286 | 0.142 | 0.15 |
word_s | 425 | 18.416 | 4.868 | 0.134 | 0.354 | 0.253 | 0.156 |
word_t | 289 | 17.08 | 4.902 | 0.098 | 0.34 | 0.236 | 0.085 |
word_m | 2 | 19.5 | 7.778 | n<5 | n<5 | n<5 | n<5 |
word_b | 2 | 15.5 | 4.95 | n<5 | n<5 | n<5 | n<5 |
word_n | 1 | 11 | NA | n<5 | n<5 | n<5 | n<5 |
word_c | 1 | 16 | NA | n<5 | n<5 | n<5 | n<5 |
word_fruit | 285 | 16.639 | 4.288 | 0.3 | 0.197 | 0.209 | 0.265 |
word_veg | 439 | 15.551 | 4.162 | 0.069 | 0.114 | 0.172 | 0.074 |
The TabCAT-EXAMINER score converts continous varaiables to ordinal for factor creation. Here I checked to see if converting to ordinal removed some of the distribution and correaltion issues noted in the raw score section. Binning in this way did not make much of a difference.
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
Letter | n | mean | sd | cor:flanker | cor:Dot_count | cor:run_dot | cor:set_shift |
---|---|---|---|---|---|---|---|
word_f_fword_recode | 294 | 8.238 | 2.21 | 0.112 | 0.159 | 0.203 | 0.135 |
word_s_fword_recode | 425 | 9.304 | 2.213 | 0.155 | 0.374 | 0.256 | 0.17 |
word_t_fword_recode | 289 | 8.702 | 2.308 | 0.113 | 0.357 | 0.227 | 0.088 |
word_l_lword_recode | 435 | 8.372 | 2.053 | 0.053 | 0.291 | 0.14 | 0.142 |
word_s_lword_recode | 425 | 9.706 | 2.075 | 0.152 | 0.349 | 0.24 | 0.167 |
word_t_lword_recode | 289 | 9.128 | 2.191 | 0.105 | 0.357 | 0.247 | 0.086 |
veg_recode | 439 | 7.695 | 1.831 | 0.071 | 0.112 | 0.168 | 0.073 |
word_fruit_animal_recode | 285 | 5.832 | 1.441 | 0.286 | 0.18 | 0.21 | 0.244 |
word_fruit_veg_recode | 285 | 8.172 | 1.956 | 0.301 | 0.196 | 0.228 | 0.262 |
I next attempted to use cross walk data to convert across fluency items. The idea being, if we can convert say words (s) to words (f) then maybe we can combine those groups. Here I completed a cross walk from S to L. Then I completed a cross walk from T to S. Then from I used that T_to_S variable, and converted it to L. Now we have the original n=294 words (f) and n=1149 [n=435 original; n=425 who were s; n=289 who were T] words (l). Results are reported under “creation of factor”. I did a similar approach with the semantic fluency items. I converted fruits to animals and animals to veg. Then I used those models to move the “fruits to animals” variable to vegitables.
All participants included. Shows data comparing a TabCAT-EXAMINER score created with the original sample and a score (TabCAT-EXAMINER crosswalk) created after converting fluency items (t etc.) to words (l).
##
##
## Table: Description of factors
##
## | | n| mean| sd| median| min| max| range| skew| kurtosis|
## |:---------------|---:|------:|-----:|------:|------:|-----:|-----:|------:|--------:|
## |Original Score | 725| 0.775| 0.519| 0.805| -1.790| 2.162| 3.953| -0.354| 0.453|
## |Crosswalk Score | 725| 0.853| 0.531| 0.863| -1.423| 2.389| 3.812| -0.170| 0.278|
## |Crosswalk Diff. | 725| -0.078| 0.163| -0.067| -0.750| 0.421| 1.171| -0.640| 1.178|
## [1] "Values in heatmap are: Correlation (no covariates). Spearman used for spearman.list, pearson for other variables"
Includes only participants who had missing fluency data. Shows data comparing a TabCAT-EXAMINER score created with the original sample and a score (TabCAT-EXAMINER crosswalk) created after converting fluency items (t etc.) to words (l). Within this restricted sample, the correlation between the TabCAT-EXAMINER and the Tabcat-EXAMINER cross walk remains high (.95). There are changes in the associations with the fluency factors, but I don’t think that invalidates anything.
##
##
## Table: Description of factors (restricted sample)
##
## | | n| mean| sd| median| min| max| range| skew| kurtosis|
## |:--------------------|---:|------:|-----:|------:|------:|-----:|-----:|------:|--------:|
## |Original Score | 269| 0.744| 0.538| 0.735| -1.790| 1.845| 3.635| -0.541| 0.864|
## |Crosswalk Score | 269| 0.896| 0.575| 0.903| -1.423| 2.373| 3.796| -0.275| 0.267|
## |Crosswalk Difference | 269| -0.152| 0.198| -0.139| -0.750| 0.421| 1.171| -0.255| 0.118|
## [1] "Values in heatmap are: Correlation (no covariates). Spearman used for spearman.list, pearson for other variables"