This file combines data from three sites: Indiana University, Lafayette University, and University College Dublin. The mean age of participants was 3.81 (SD = 0.75). Number of participants by age group:
| IU | laffayette | ucd | |
|---|---|---|---|
| 3 | 11 | 8 | 12 |
| 4 | 2 | 8 | 23 |
| 5 | 6 | 6 | 4 |
Note: There are 4 two-year-olds in the 3-year-old age group.
Participants completed the full battery: give-n task, highest count
task, dot comparison task, and a visual memory task.
Eight participants were removed because of experimenter errors (age entered in AMS task did not match the age calculated using DOB or reported in months)
Participants saw different numerical ratios depending on their age:
Accuracy across all trials was: 0.59 (0.13).
The number of participants with accuracy equal or above 0.6 is 6, 15, 14, for 3-, 4-, and 5-year-olds respectively. Typically, w can only be obtained for participants with accuracy above 0.6
| age | N | accuracy | sd | se | ci |
|---|---|---|---|---|---|
| 3 | 31 | 0.5188172 | 0.1008291 | 0.0181094 | 0.0369844 |
| 4 | 33 | 0.5928030 | 0.1064962 | 0.0185386 | 0.0377619 |
| 5 | 16 | 0.7109375 | 0.1226339 | 0.0306585 | 0.0653470 |
##
## Pearson's product-moment correlation
##
## data: ams_acc_reliability$accuracy_even and ams_acc_reliability$accuracy_odd
## t = 5.5204, df = 78, p-value = 4.276e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3512242 0.6715477
## sample estimates:
## cor
## 0.5300381
## $estimate
## accuracy_even accuracy_odd age
## accuracy_even 1.0000000 0.4016670 0.3974636
## accuracy_odd 0.4016670 1.0000000 0.1906663
## age 0.3974636 0.1906663 1.0000000
##
## $p.value
## accuracy_even accuracy_odd age
## accuracy_even 0.0000000000 0.0002435198 0.0002866681
## accuracy_odd 0.0002435198 0.0000000000 0.0923467938
## age 0.0002866681 0.0923467938 0.0000000000
##
## $statistic
## accuracy_even accuracy_odd age
## accuracy_even 0.000000 3.848732 3.800850
## accuracy_odd 3.848732 0.000000 1.704357
## age 3.800850 1.704357 0.000000
##
## $n
## [1] 80
##
## $gp
## [1] 1
##
## $method
## [1] "pearson"
##
## Pearson's product-moment correlation
##
## data: .$accuracy_even and .$accuracy_odd
## t = 1.689, df = 29, p-value = 0.1019
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.0616009 0.5909455
## sample estimates:
## cor
## 0.2992716
##
## Pearson's product-moment correlation
##
## data: .$accuracy_even and .$accuracy_odd
## t = 2.881, df = 31, p-value = 0.007133
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1380293 0.6934617
## sample estimates:
## cor
## 0.4595612
##
## Pearson's product-moment correlation
##
## data: .$accuracy_even and .$accuracy_odd
## t = 2.0515, df = 14, p-value = 0.05941
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.01960455 0.78854976
## sample estimates:
## cor
## 0.480773
To compare accuracy across age groups, we used the averaged accuracy on overlapping trials (2.0 and 1.5 ratio).
| age | N | accuracy_overlap | sd | se | ci |
|---|---|---|---|---|---|
| 3 | 31 | 0.5107527 | 0.1212243 | 0.0217725 | 0.0444654 |
| 4 | 33 | 0.6010101 | 0.1126881 | 0.0196165 | 0.0399575 |
| 5 | 16 | 0.7812500 | 0.1649214 | 0.0412304 | 0.0878804 |
The visual magnitudes were added to the Psychopy output files,
and files for even and odd trials were created.
Code:
/Volumes/BL-PSY-gunderson_lab/Main/Studies/2023_manynumbers/scripts/mn_weberfraction_firststep_082224.R
W fraction was calculated using code from DeWind et al. (2015)
and considering the two continuous covariates (space [convex hull] and
size [surface area]) for all the 48 trials.
Code:
/Volumes/BL-PSY-gunderson_lab/Main/Studies/2023_manynumbers/scripts/mn_scripts/mn_dewind_weberfraction_042324.m
/Volumes/BL-PSY-gunderson_lab/Main/Studies/2023_manynumbers/2024_iu_pilot/scripts/mn_w_secondstep.m
W fraction was calculated for odd and even trials.
For the split-half reliability, only w greater than 0 and smaller or equal than 3 were considered.
Participants with w within the range (all trials):
| Var1 | Freq |
|---|---|
| 3 | 17 |
| 4 | 18 |
| 5 | 14 |
| Var1 | Freq |
|---|---|
| 3 | 11 |
| 4 | 13 |
| 5 | 12 |
w_data_wfraction_reliability %>%
subset(w_even<= thr & w_even > 0) %>%
subset(w_odd <= thr & w_odd > 0) %>%
ggplot(aes(x=w_even, y=w_odd)) +
geom_smooth(method=lm, se=F, fullrange=F, alpha = .1, color = "black")+
geom_smooth(method=lm, se=T, fullrange=F, alpha = .1, aes(color =as.factor(age)))+
geom_point(aes(color =as.factor(age))) +
xlab("Weber Fraction\n(Even trials)")+
ylab("Weber Fraction\n(Odd trials)")+
#scale_shape_manual(values=c(3, 16, 17))+
theme_bw()+
#scale_color_manual(values = c("#0186C7","#E96A01","#FED602"))+
scale_y_continuous(breaks=seq(0, 2., .5), limits=c(0,2))+
scale_x_continuous(breaks=seq(0, 2., .5), limits=c(0,2))+
theme(legend.position = c(.9, .85),
axis.title.x=element_text(size=size_text),
axis.text.x = element_text(size=size_text),
#axis.title.x = element_text(size = size_text),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_rect(fill = "white", colour = "grey50"),
strip.background =element_rect(fill="#f0f0f0"),
strip.text = element_text(size = size_text),
axis.text.y = element_text(size=size_text),
axis.title.y = element_text(size=size_text),
legend.text=element_text(size=size_text))
w_data_wfraction_reliability %>%
subset(w_even<= thr & w_even > 0) %>%
subset(w_odd <= thr & w_odd > 0) %>%
{cor.test(.$w_even, .$w_odd)}
##
## Pearson's product-moment correlation
##
## data: .$w_even and .$w_odd
## t = -0.065477, df = 34, p-value = 0.9482
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3385154 0.3184822
## sample estimates:
## cor
## -0.01122844
w_data_wfraction_reliability %>%
subset(w_even<= thr & w_even > 0) %>%
subset(w_odd <= thr & w_odd > 0) %>%
{pcor(dplyr::select(., w_odd, w_even, age))}
## $estimate
## w_odd w_even age
## w_odd 1.00000000 -0.06785315 -0.1551190
## w_even -0.06785315 1.00000000 -0.3710207
## age -0.15511896 -0.37102072 1.0000000
##
## $p.value
## w_odd w_even age
## w_odd 0.0000000 0.69853942 0.37358903
## w_even 0.6985394 0.00000000 0.02821668
## age 0.3735890 0.02821668 0.00000000
##
## $statistic
## w_odd w_even age
## w_odd 0.0000000 -0.3906871 -0.9020087
## w_even -0.3906871 0.0000000 -2.2951705
## age -0.9020087 -2.2951705 0.0000000
##
## $n
## [1] 36
##
## $gp
## [1] 1
##
## $method
## [1] "pearson"
# w_data_wfraction_reliability %>%
# subset(w_all <= thr & w_all > 0) %>%
# subset(w_odd <= thr & w_odd > 0) %>%
# {cor.test(.$w_odd, .$w_all)}
#
# w_data_wfraction_reliability %>%
# subset(w_all <= thr & w_all > 0) %>%
# subset(w_even <= thr & w_even > 0) %>%
# {cor.test(.$w_even, .$w_all)}
graph_w_size = w_data_wfraction_reliability %>%
#subset(w_all<= thr & w_all > 0) %>%
ggplot(aes(y=w_size, x =as.factor(age))) +
geom_boxplot(color="black", fill="white")+
#ylab("Frequency")+
xlab("Weber Fraction\n(Size)")+
#facet_grid(.~(age))+
scale_y_continuous(breaks=seq(-350, 150, 50), limits=c(-350,150))
# theme(legend.position="bottom",
# axis.title.x=element_text(size=size_text),
# axis.text.x = element_text(size=size_text),
# #axis.title.x = element_text(size = size_text),
# panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_rect(fill = "white", colour = "grey50"),
# strip.background =element_rect(fill="#f0f0f0"),
# strip.text = element_text(size = size_text),
# axis.text.y = element_text(size=size_text),
# axis.title.y = element_text(size=size_text),
# legend.text=element_text(size=size_text))
#annotate("text", x=3, y=10, label= paste("n =", (n_w_all), sep = ""))
#graph_w_size
graph_w_space = w_data_wfraction_reliability %>%
#subset(w_all<= thr & w_all > 0) %>%
ggplot(aes(y=w_space, x =as.factor(age))) +
geom_boxplot(color="black", fill="white")+
#ylab("Frequency")+
xlab("Weber Fraction\n(Space)")+
#facet_grid(.~(age))+
scale_y_continuous(breaks=seq(-40, 60, 20), limits=c(-40,60))
# theme(legend.position="bottom",
# axis.title.x=element_text(size=size_text),
# axis.text.x = element_text(size=size_text),
# #axis.title.x = element_text(size = size_text),
# panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_rect(fill = "white", colour = "grey50"),
# strip.background =element_rect(fill="#f0f0f0"),
# strip.text = element_text(size = size_text),
# axis.text.y = element_text(size=size_text),
# axis.title.y = element_text(size=size_text),
# legend.text=element_text(size=size_text))
#annotate("text", x=3, y=10, label= paste("n =", (n_w_all), sep = ""))
#graph_w_space
multiplot(graph_w_size,graph_w_space, cols =1)
n_w_size = w_data_wfraction_reliability %>%
subset(w_all> thr | w_all < 0) %>%
subset(w_size <= thr & w_size > 0) %>%
nrow()
n_w_size
## [1] 2
n_w_space = w_data_wfraction_reliability %>%
subset(w_all> thr | w_all < 0) %>%
subset(w_space <= thr & w_space > 0) %>%
nrow()
n_w_space
## [1] 1
To examine te relations between size and space with number, we needed to use the beta values instead of the w’s, as to calculate w’s, the DeWind method transforms the betas using a 1/(x) function, which doesn’t allow to combine negative and positive values.
In Starr et al. (2017), the relation between size and number was -.07 and -.16 for the four and the six-year-old group, respectively. The relation between space and number was .64 and .29, for the four and the six- year-old groups, respectively
w_data_wfraction_reliability %>%
#subset(w_space >= -15 & w_space<= 15) %>%
subset(w_all<= thr & w_all > 0) %>%
#subset(w_all> thr | w_all < 0) %>%
{cor.test(.$num_all, .$size_all)}
##
## Pearson's product-moment correlation
##
## data: .$num_all and .$size_all
## t = -1.9712, df = 47, p-value = 0.05461
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.517329669 0.005275101
## sample estimates:
## cor
## -0.2763314
w_data_wfraction_reliability %>%
#subset(w_space >= -15 & w_space<= 15) %>%
#subset(w_all> thr | w_all < 0) %>%
subset(w_all<= thr & w_all > 0) %>%
{cor.test(.$num_all, .$space_all)}
##
## Pearson's product-moment correlation
##
## data: .$num_all and .$space_all
## t = 5.0291, df = 47, p-value = 7.623e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.372199 0.748236
## sample estimates:
## cor
## 0.5914896
age_num = w_data_wfraction_reliability %>%
subset(w_all<= thr & w_all > 0) %>%
ggplot(aes(x=as.factor(age), y=num_all)) +
geom_dotplot(binaxis='y', stackdir='center')+
#scale_y_continuous(breaks=seq(0, 1, .1), limits=c(0,1.1),trans = shift_trans(0), expand = c(0,0))+
ylab("Number\n(Beta)")+
xlab("Age")+
stat_summary(fun.data=mean_sdl, fun.args = list(mult=1),
geom="pointrange", color="red")+
theme_bw()
age_size = w_data_wfraction_reliability %>%
subset(w_all<= thr & w_all > 0) %>%
ggplot(aes(x=as.factor(age), y=size_all)) +
geom_dotplot(binaxis='y', stackdir='center')+
#scale_y_continuous(breaks=seq(0, 1, .1), limits=c(0,1.1),trans = shift_trans(0), expand = c(0,0))+
ylab("Size\n(Beta)")+
xlab("Age")+
stat_summary(fun.data=mean_sdl, fun.args = list(mult=1),
geom="pointrange", color="red")+
theme_bw()
age_space =w_data_wfraction_reliability %>%
subset(w_all<= thr & w_all > 0) %>%
ggplot(aes(x=as.factor(age), y=space_all)) +
geom_dotplot(binaxis='y', stackdir='center')+
#scale_y_continuous(breaks=seq(0, 1, .1), limits=c(0,1.1),trans = shift_trans(0), expand = c(0,0))+
ylab("Space\n(Beta)")+
xlab("Age")+
stat_summary(fun.data=mean_sdl, fun.args = list(mult=1),
geom="pointrange", color="red")+
theme_bw()
multiplot(age_num,age_size, age_space, cols = 1)
These results resamble the ones reported by Starr et al. (2017):
W scores were calculated for all trials, even and odd, but only entering the numerical information into the model.
Reliability was also only calculated for values above zero and below or equal 3
Participants with w within the range (all trials):
| Var1 | Freq |
|---|---|
| 3 | 5 |
| 4 | 19 |
| 5 | 15 |
| Var1 | Freq |
|---|---|
| 3 | 3 |
| 4 | 14 |
| 5 | 13 |
w_data_wfraction_reliability %>%
subset(w_odd_numonly<= thr & w_odd_numonly > 0) %>%
subset(w_even_numonly <= thr & w_even_numonly > 0) %>%
#{cor.test(.$w_all_numonly, .$weber_fraction_all)}
ggplot(aes(x=w_odd_numonly, y=w_even_numonly)) +
geom_smooth(method=lm, se=F, fullrange=F, alpha = .1, color = "black")+
geom_smooth(method=lm, se=F, fullrange=F, alpha = .1, aes(color =as.factor(age)))+
geom_point(aes(color =as.factor(age))) +
xlab("Weber Fraction\n(Even trials)")+
ylab("Weber Fraction\n(Odd trials)")+
#scale_shape_manual(values=c(3, 16, 17))+
theme_bw()+
#scale_color_manual(values = c("#0186C7","#E96A01","#FED602"))+
#scale_y_continuous(breaks=seq(0, 1, .1), limits=c(0,1.01),trans = shift_trans(0), expand = c(0,0))+
#scale_x_continuous(breaks=seq(0, 1, .1), limits=c(0,1.01),trans = shift_trans(0), expand = c(0,0))+
theme(legend.position="bottom",
axis.title.x=element_text(size=size_text),
axis.text.x = element_text(size=size_text),
#axis.title.x = element_text(size = size_text),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_rect(fill = "white", colour = "grey50"),
strip.background =element_rect(fill="#f0f0f0"),
strip.text = element_text(size = size_text),
axis.text.y = element_text(size=size_text),
axis.title.y = element_text(size=size_text),
legend.text=element_text(size=size_text))
w_data_wfraction_reliability %>%
subset(w_odd_numonly<= thr & w_odd_numonly > 0) %>%
subset(w_even_numonly <= thr & w_even_numonly > 0) %>%
{cor.test(.$w_even_numonly, .$w_odd_numonly)}
##
## Pearson's product-moment correlation
##
## data: .$w_even_numonly and .$w_odd_numonly
## t = 3.8501, df = 28, p-value = 0.0006272
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2894201 0.7827081
## sample estimates:
## cor
## 0.5883433
w_data_wfraction_reliability %>%
subset(w_odd_numonly<= thr & w_odd_numonly > 0) %>%
subset(w_even_numonly <= thr & w_even_numonly > 0) %>%
{pcor(dplyr::select(., w_even_numonly, w_odd_numonly, age))}
## $estimate
## w_even_numonly w_odd_numonly age
## w_even_numonly 1.0000000 0.2769199 -0.5173151
## w_odd_numonly 0.2769199 1.0000000 -0.3692227
## age -0.5173151 -0.3692227 1.0000000
##
## $p.value
## w_even_numonly w_odd_numonly age
## w_even_numonly 0.000000000 0.14586891 0.004055285
## w_odd_numonly 0.145868913 0.00000000 0.048707572
## age 0.004055285 0.04870757 0.000000000
##
## $statistic
## w_even_numonly w_odd_numonly age
## w_even_numonly 0.000000 1.497480 -3.140995
## w_odd_numonly 1.497480 0.000000 -2.064406
## age -3.140995 -2.064406 0.000000
##
## $n
## [1] 30
##
## $gp
## [1] 1
##
## $method
## [1] "pearson"
# w_data_wfraction_reliability %>%
# subset(w_all_numonly <= thr & w_all_numonly > 0) %>%
# subset(w_odd_numonly <= thr & w_odd_numonly > 0) %>%
# {cor.test(.$w_odd_numonly, .$w_all_numonly)}
#
# w_data_wfraction_reliability %>%
# subset(w_all_numonly <= thr & w_all_numonly > 0) %>%
# subset(w_even_numonly <= thr & w_even_numonly > 0) %>%
# {cor.test(.$w_even_numonly, .$w_all_numonly)}
W scores were calculated for all trials, even and odd.
Code:
/Volumes/BL-PSY-gunderson_lab/Main/Studies/2023_manynumbers/2024_coretasks_reliability/Panamath
Weber Fraction Calculation.Rmd
Reliability was also only calculated for values above zero and below or equal 3
Participants with w within the range (all trials):
| Var1 | Freq |
|---|---|
| 3 | 8 |
| 4 | 21 |
| 5 | 15 |
| Var1 | Freq |
|---|---|
| 3 | 5 |
| 4 | 14 |
| 5 | 13 |
w_data_wfraction_reliability %>%
subset(weber_fraction_odd<= thr & weber_fraction_odd > 0) %>%
subset(weber_fraction_even <= thr & weber_fraction_even > 0) %>%
#{cor.test(.$w_all_numonly, .$weber_fraction_all)}
ggplot(aes(x=weber_fraction_odd, y=weber_fraction_even,color =as.factor(age))) +
geom_smooth(method=lm, se=F, fullrange=F, alpha = .1, color = "black")+
geom_smooth(method=lm, se=F, fullrange=F, alpha = .1, aes(color =as.factor(age)))+
geom_point(aes(color =as.factor(age))) +
ylab("Weber Fraction\n(Even trials)")+
xlab("Weber Fraction\n(Odd trials)")+
#scale_shape_manual(values=c(3, 16, 17))+
theme_bw()+
#scale_color_manual(values = c("#0186C7","#E96A01","#FED602"))+
#scale_y_continuous(breaks=seq(0, 1, .1), limits=c(0,1.01),trans = shift_trans(0), expand = c(0,0))+
#scale_x_continuous(breaks=seq(0, 1, .1), limits=c(0,1.01),trans = shift_trans(0), expand = c(0,0))+
theme(legend.position="bottom",
axis.title.x=element_text(size=size_text),
axis.text.x = element_text(size=size_text),
#axis.title.x = element_text(size = size_text),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_rect(fill = "white", colour = "grey50"),
strip.background =element_rect(fill="#f0f0f0"),
strip.text = element_text(size = size_text),
axis.text.y = element_text(size=size_text),
axis.title.y = element_text(size=size_text),
legend.text=element_text(size=size_text))
w_data_wfraction_reliability %>%
subset(weber_fraction_odd<= thr & weber_fraction_odd > 0) %>%
subset(weber_fraction_even <= thr & weber_fraction_even > 0) %>%
{cor.test(.$weber_fraction_even, .$weber_fraction_odd)}
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_even and .$weber_fraction_odd
## t = 6.1395, df = 30, p-value = 9.447e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5373248 0.8688330
## sample estimates:
## cor
## 0.7462078
w_data_wfraction_reliability %>%
subset(weber_fraction_odd<= thr & weber_fraction_odd > 0) %>%
subset(weber_fraction_even <= thr & weber_fraction_even > 0) %>%
{pcor(dplyr::select(., weber_fraction_odd, weber_fraction_even, age))}
## $estimate
## weber_fraction_odd weber_fraction_even age
## weber_fraction_odd 1.0000000 0.5155411 -0.2248067
## weber_fraction_even 0.5155411 1.0000000 -0.5027071
## age -0.2248067 -0.5027071 1.0000000
##
## $p.value
## weber_fraction_odd weber_fraction_even age
## weber_fraction_odd 0.000000000 0.002995181 0.224033790
## weber_fraction_even 0.002995181 0.000000000 0.003949085
## age 0.224033790 0.003949085 0.000000000
##
## $statistic
## weber_fraction_odd weber_fraction_even age
## weber_fraction_odd 0.000000 3.240037 -1.242423
## weber_fraction_even 3.240037 0.000000 -3.131632
## age -1.242423 -3.131632 0.000000
##
## $n
## [1] 32
##
## $gp
## [1] 1
##
## $method
## [1] "pearson"
# w_data_wfraction_reliability %>%
# subset(w_all_numonly <= thr & w_all_numonly > 0) %>%
# subset(w_odd_numonly <= thr & w_odd_numonly > 0) %>%
# {cor.test(.$w_odd_numonly, .$w_all_numonly)}
#
# w_data_wfraction_reliability %>%
# subset(w_all_numonly <= thr & w_all_numonly > 0) %>%
# subset(w_even_numonly <= thr & w_even_numonly > 0) %>%
# {cor.test(.$w_even_numonly, .$w_all_numonly)}
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and .$w_all
## t = 1.6014, df = 34, p-value = 0.1185
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.06977444 0.54587320
## sample estimates:
## cor
## 0.2648322
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and .$w_all_numonly
## t = 24.116, df = 37, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9424413 0.9840832
## sample estimates:
## cor
## 0.9696321
##
## Pearson's product-moment correlation
##
## data: .$w_all and .$w_all_numonly
## t = 2.0719, df = 31, p-value = 0.04668
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.00619809 0.61806989
## sample estimates:
## cor
## 0.348765
##
## Pearson's product-moment correlation
##
## data: .$w_all and .$accuracy
## t = -2.5144, df = 47, p-value = 0.0154
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.57031114 -0.06990778
## sample estimates:
## cor
## -0.3443355
##
## Pearson's product-moment correlation
##
## data: .$w_all_numonly and .$accuracy
## t = -8.0594, df = 37, p-value = 1.156e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8896488 -0.6451336
## sample estimates:
## cor
## -0.7981805
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and .$accuracy
## t = -8.9879, df = 42, p-value = 2.455e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8929751 -0.6773665
## sample estimates:
## cor
## -0.811131
##
## Pearson's product-moment correlation
##
## data: .$accuracy_overlap and .$accuracy
## t = 21.566, df = 78, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8857935 0.9516295
## sample estimates:
## cor
## 0.9254046
## age N age_months sd se ci
## 1 3 31 40.77419 4.128839 0.7415614 1.514470
## 2 4 33 53.57576 3.699918 0.6440731 1.311934
## 3 5 16 64.06250 3.872445 0.9681113 2.063480
##
## Pearson's product-moment correlation
##
## data: .$accuracy_overlap and .$age_months
## t = 7.3979, df = 78, p-value = 1.366e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4918031 0.7552880
## sample estimates:
## cor
## 0.6421327
##
## Pearson's product-moment correlation
##
## data: .$w_all and .$age_months
## t = -3.6377, df = 47, p-value = 0.0006816
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6625854 -0.2159905
## sample estimates:
## cor
## -0.4687191
##
## Pearson's product-moment correlation
##
## data: .$w_all_numonly and .$age_months
## t = -5.3327, df = 37, p-value = 5.027e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8069078 -0.4339728
## sample estimates:
## cor
## -0.6592249
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and .$age_months
## t = -5.2134, df = 42, p-value = 5.311e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7787675 -0.4053556
## sample estimates:
## cor
## -0.6268049
##
## Pearson's product-moment correlation
##
## data: .$accuracy_overlap and .$given_accuracy
## t = 5.7999, df = 78, p-value = 1.349e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3743605 0.6859160
## sample estimates:
## cor
## 0.5489264
##
## Pearson's product-moment correlation
##
## data: .$w_all and .$given_accuracy
## t = -3.7973, df = 47, p-value = 0.0004188
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6739121 -0.2354146
## sample estimates:
## cor
## -0.484536
##
## Pearson's product-moment correlation
##
## data: .$w_all_numonly and .$given_accuracy
## t = -4.7165, df = 37, p-value = 3.375e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7778876 -0.3684923
## sample estimates:
## cor
## -0.6127658
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and .$given_accuracy
## t = -4.1656, df = 42, p-value = 0.0001512
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7217281 -0.2904454
## sample estimates:
## cor
## -0.5407023
##
## Pearson's product-moment correlation
##
## data: .$accuracy_overlap and log(.$highestcount_score)
## t = 4.5934, df = 68, p-value = 1.942e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2841489 0.6475600
## sample estimates:
## cor
## 0.4866317
##
## Pearson's product-moment correlation
##
## data: .$w_all and log(.$highestcount_score)
## t = -3.0036, df = 43, p-value = 0.004435
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6326391 -0.1400202
## sample estimates:
## cor
## -0.4164382
##
## Pearson's product-moment correlation
##
## data: .$w_all_numonly and log(.$highestcount_score)
## t = -2.8377, df = 35, p-value = 0.007511
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6635183 -0.1261356
## sample estimates:
## cor
## -0.432479
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and log(.$highestcount_score)
## t = -3.1775, df = 39, p-value = 0.002905
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6679420 -0.1694708
## sample estimates:
## cor
## -0.4534779
Accuracy was calculated using the script below:
/Volumes/BL-PSY-gunderson_lab/Main/Studies/2023_manynumbers/2024_iu_pilot/scripts/mn_visualmemory_analyses_spring24.Rmd
##
## Pearson's product-moment correlation
##
## data: .$accuracy_overlap and .$VisualMemoryTask
## t = 4.1078, df = 78, p-value = 9.775e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2226462 0.5870520
## sample estimates:
## cor
## 0.4217323
##
## Pearson's product-moment correlation
##
## data: .$w_all and .$VisualMemoryTask
## t = -2.9983, df = 47, p-value = 0.004329
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6128456 -0.1346807
## sample estimates:
## cor
## -0.400702
##
## Pearson's product-moment correlation
##
## data: .$w_all_numonly and .$VisualMemoryTask
## t = -4.4271, df = 37, p-value = 8.146e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7624147 -0.3351648
## sample estimates:
## cor
## -0.5884528
##
## Pearson's product-moment correlation
##
## data: .$weber_fraction_all and .$VisualMemoryTask
## t = -4.0641, df = 42, p-value = 0.0002067
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7153336 -0.2782946
## sample estimates:
## cor
## -0.5312804