Willinton Hernan Pinchao Pinchao

Uso dos delineamento inteiramente casualizado(DIC) e delineamento blocos casualizado(DBC)

EXERCICIO

Produção em metros cúbicos por hectare de um experimento com 4 blocos casualizados e 7 procedências de Eucalyptus grandis.

Limpeza das janelas

gc(reset = TRUE)     
          used (Mb) gc trigger  (Mb) max used (Mb)
Ncells 1377411 73.6    2664930 142.4  1377411 73.6
Vcells 3324024 25.4    8388608  64.0  3324024 25.4

Principais pacotes usados

Os pacotes estão intalados?

if(sum(as.numeric(!pacotes %in% installed.packages())) != 0){
  instalador <- pacotes[!pacotes %in% installed.packages()]
  for(i in 1:length(instalador)) {
    install.packages(instalador, dependencies = T)
    break()}
  sapply(pacotes, require, character = T) 
} else {
  sapply(pacotes, require, character = T) 
}
   readxl tidyverse 
     TRUE      TRUE 

Leitura dos dados

Primeiras e últimas linhas da base de dados

Data frame dos dados

str(dados_dic)
tibble [28 × 2] (S3: tbl_df/tbl/data.frame)
 $ Tratamento: chr [1:28] "P1" "P1" "P1" "P1" ...
 $ RESULTADO : num [1:28] 358 380 353 360 284 249 259 242 273 222 ...

Transformação dos tratamentos de caráter em fator, dados para DIC.

str(dados_dic)
'data.frame':   28 obs. of  2 variables:
 $ Tratamento: Factor w/ 7 levels "P1","P2","P3",..: 1 1 1 1 2 2 2 2 3 3 ...
 $ RESULTADO : num  358 380 353 360 284 249 259 242 273 222 ...

Analisis descritiva dos dados

Média geral dos dados

(ybar <- mean(dados_dic$RESULTADO))
[1] 275.3214

Média, desvio padrão e erro padrão da média dos tratamentos.

1. Modelo anova para DIC.

Modelo estatístico: y_ij = m + t_i + e_ij

Hipóteses

H0: mu1 = mu2 =…= muI = mu

Ha: pelo menos duas médias populacionais diferem entre si.

anova(mod_dic)
Analysis of Variance Table

Response: RESULTADO
           Df Sum Sq Mean Sq F value        Pr(>F)    
Tratamento  6  53738  8956.3   28.74 0.00000000437 ***
Residuals  21   6544   311.6                          
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Com o resultado final, foi aceita a hipótese alternativa (Ha), já que há diferença em alguns dos tratamentos apresentados, o que significa que alguns dos tratamentos de produção de eucalipto apresentam valores significativamente diferentes.

2. Metodo Delineamento en blocos casualizados (DBC)

Letura dos dados metodo DBC

Data frame dos dados DBC

str(dados_dbc)
tibble [28 × 3] (S3: tbl_df/tbl/data.frame)
 $ Tratamento: chr [1:28] "P1" "P1" "P1" "P1" ...
 $ blocos    : num [1:28] 1 2 3 4 1 2 3 4 1 2 ...
 $ RESULTADO : num [1:28] 358 380 353 360 284 249 259 242 273 222 ...

Tranformação dos tratamento e blocos para factor metodo DBC

str(dados_dbc)
'data.frame':   28 obs. of  3 variables:
 $ Tratamento: Factor w/ 7 levels "P1","P2","P3",..: 1 1 1 1 2 2 2 2 3 3 ...
 $ blocos    : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...
 $ RESULTADO : num  358 380 353 360 284 249 259 242 273 222 ...

Anova dos dados para DBC

Modelo estatístico: y_ij = m + b_j + t_i + e_ij

Hipóteses

H0: mu1 = mu2 =…= muI = mu

Ha: pelo menos duas médias populacionais diferem entre si.

anova(mod_dbc)
Analysis of Variance Table

Response: RESULTADO
           Df Sum Sq Mean Sq F value         Pr(>F)    
blocos      3   2519   839.6   3.754        0.02964 *  
Tratamento  6  53738  8956.3  40.047 0.000000001874 ***
Residuals  18   4026   223.6                           
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Foi aceita a hipótese alternativa (Ha), já que há diferenças estatísticas em alguns dos tratamentos.

Conclusão

Nos dois delineamentos, os tratamentos apresentaram diferenças estatísticas, no entanto concluindo que o DBC seria a melhor alternativa para a análise, já que no DBC houve efeito do bloco, sendo assim um analisis com un ambiente mais controlado.

LS0tDQp0aXRsZTogIkFUSVZJREFERSAwMSBDRU41ODE1Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBBVElWSURBREUgMDEgQ0VONTgxNQ0KICBwZGZfZG9jdW1lbnQ6IEFUSVZJREFERSAwMSBDRU41ODE1DQogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KIyMjIFdpbGxpbnRvbiBIZXJuYW4gUGluY2hhbyBQaW5jaGFvDQojIFVzbyBkb3MgZGVsaW5lYW1lbnRvIGludGVpcmFtZW50ZSBjYXN1YWxpemFkbyhESUMpIGUgZGVsaW5lYW1lbnRvIGJsb2NvcyBjYXN1YWxpemFkbyhEQkMpDQojIyBFWEVSQ0lDSU8NCiMjIyBQcm9kdcOnw6NvIGVtIG1ldHJvcyBjw7piaWNvcyBwb3IgaGVjdGFyZSBkZSB1bSBleHBlcmltZW50byBjb20gNCBibG9jb3MgY2FzdWFsaXphZG9zIGUgNyBwcm9jZWTDqm5jaWFzIGRlIEV1Y2FseXB0dXMgZ3JhbmRpcy4NCj4gTGltcGV6YSBkYXMgamFuZWxhcyANCg0KYGBge3IgZWNobz1UUlVFfQ0Kb3B0aW9ucyhzY2lwZW4gPSA5OTkpDQpybShsaXN0ID0gbHMoKSkgDQpnYyhyZXNldCA9IFRSVUUpICAgICANCmdyYXBoaWNzLm9mZigpICAgICAgDQpgYGANCj4gUHJpbmNpcGFpcyBwYWNvdGVzIHVzYWRvcw0KDQpgYGB7cn0NCnBhY290ZXMgPC0gYygicmVhZHhsIiwNCiAgICAgICAgICAgICAidGlkeXZlcnNlIikgDQpgYGANCj4gT3MgcGFjb3RlcyBlc3TDo28gaW50YWxhZG9zPw0KDQpgYGB7cn0NCmlmKHN1bShhcy5udW1lcmljKCFwYWNvdGVzICVpbiUgaW5zdGFsbGVkLnBhY2thZ2VzKCkpKSAhPSAwKXsNCiAgaW5zdGFsYWRvciA8LSBwYWNvdGVzWyFwYWNvdGVzICVpbiUgaW5zdGFsbGVkLnBhY2thZ2VzKCldDQogIGZvcihpIGluIDE6bGVuZ3RoKGluc3RhbGFkb3IpKSB7DQogICAgaW5zdGFsbC5wYWNrYWdlcyhpbnN0YWxhZG9yLCBkZXBlbmRlbmNpZXMgPSBUKQ0KICAgIGJyZWFrKCl9DQogIHNhcHBseShwYWNvdGVzLCByZXF1aXJlLCBjaGFyYWN0ZXIgPSBUKSANCn0gZWxzZSB7DQogIHNhcHBseShwYWNvdGVzLCByZXF1aXJlLCBjaGFyYWN0ZXIgPSBUKSANCn0NCmBgYA0KIyMjIExlaXR1cmEgZG9zIGRhZG9zDQoNCmBgYHtyIGVjaG89VFJVRX0NCg0KZGFkb3NfZGljIDwtIHJlYWRfZXhjZWwoIkM6L1VzZXJzL0FzdXMvT25lRHJpdmUvRXNjcml0b3Jpby9SIE1FVEFCT0xJVE8vQVVMQTJESUMueGxzeCIsIHNoZWV0ID0gMSkNCg0KYGBgDQojIyMgUHJpbWVpcmFzIGUgw7psdGltYXMgbGluaGFzIGRhIGJhc2UgZGUgZGFkb3MNCmBgYHtyfQ0KY2F0KCJQcmltZWlyYXMgZSDDumx0aW1hcyBsaW5oYXMgZGEgYmFzZSBkZSBkYWRvczpcbiIpDQpwcmludChoZWFkKGRhZG9zX2RpYykpOyBwcmludCh0YWlsKGRhZG9zX2RpYykpDQpgYGANCiMjIyBEYXRhIGZyYW1lIGRvcyBkYWRvcyANCmBgYHtyfQ0Kc3RyKGRhZG9zX2RpYykNCmBgYA0KIyMjIFRyYW5zZm9ybWHDp8OjbyBkb3MgdHJhdGFtZW50b3MgZGUgY2Fyw6F0ZXIgZW0gZmF0b3IsIGRhZG9zIHBhcmEgRElDLiANCg0KYGBge3IgQU5PVkEsIGVjaG89VFJVRX0NCmRhZG9zX2RpYyA8LSB0cmFuc2Zvcm0oZGFkb3NfZGljLCBUcmF0YW1lbnRvID0gYXMuZmFjdG9yKFRyYXRhbWVudG8pKQ0KYGBgDQoNCmBgYHtyfQ0Kc3RyKGRhZG9zX2RpYykNCmBgYA0KIyMgQW5hbGlzaXMgZGVzY3JpdGl2YSBkb3MgZGFkb3MNCiMjIyBNw6lkaWEgZ2VyYWwgZG9zIGRhZG9zIA0KYGBge3J9DQooeWJhciA8LSBtZWFuKGRhZG9zX2RpYyRSRVNVTFRBRE8pKQ0KYGBgDQojIyMgTcOpZGlhLCBkZXN2aW8gcGFkcsOjbyBlIGVycm8gcGFkcsOjbyBkYSBtw6lkaWEgZG9zIHRyYXRhbWVudG9zLg0KDQpgYGB7cn0NCmVzdGF0X2Rlc2NyX2RpYyA8LSBkYWRvc19kaWMgJT4lDQogIGdyb3VwX2J5KFRyYXRhbWVudG8pICU+JSBzdW1tYXJpc2UoDQogICAgbWVkaWFfdHJhdCA9IG1lYW4oUkVTVUxUQURPLCBuYS5ybSA9IFRSVUUpLA0KICAgIGRlc3Zpb190cmF0ID0gc2QoUkVTVUxUQURPLCBuYS5ybSA9IFRSVUUpLA0KICAgIEVQTSA9ZGVzdmlvX3RyYXQvc3FydChsZW5ndGgoUkVTVUxUQURPKSkpDQplc3RhdF9kZXNjcl9kaWMNCmBgYA0KIyAxLiBNb2RlbG8gYW5vdmEgcGFyYSBESUMuDQojIyBNb2RlbG8gZXN0YXTDrXN0aWNvOiB5X2lqID0gbSArIHRfaSArIGVfaWoNCiMjIEhpcMOzdGVzZXMNCiMjIyBIMDogbXUxID0gbXUyID0uLi49IG11SSA9IG11DQojIyMgSGE6IHBlbG8gbWVub3MgZHVhcyBtw6lkaWFzIHBvcHVsYWNpb25haXMgZGlmZXJlbSBlbnRyZSBzaS4NCmBgYHtyfQ0KbW9kX2RpYyA8LSBsbShSRVNVTFRBRE8gfiBUcmF0YW1lbnRvLCBkYXRhID0gZGFkb3NfZGljKQ0KYW5vdmEobW9kX2RpYykNCmBgYA0KIyMjIENvbSBvIHJlc3VsdGFkbyBmaW5hbCwgZm9pIGFjZWl0YSBhIGhpcMOzdGVzZSBhbHRlcm5hdGl2YSAoSGEpLCBqw6EgcXVlIGjDoSBkaWZlcmVuw6dhIGVtIGFsZ3VucyBkb3MgdHJhdGFtZW50b3MgYXByZXNlbnRhZG9zLCBvIHF1ZSBzaWduaWZpY2EgcXVlIGFsZ3VucyBkb3MgdHJhdGFtZW50b3MgZGUgcHJvZHXDp8OjbyBkZSBldWNhbGlwdG8gYXByZXNlbnRhbSB2YWxvcmVzIHNpZ25pZmljYXRpdmFtZW50ZSBkaWZlcmVudGVzLg0KIyMgMi4gTWV0b2RvIERlbGluZWFtZW50byBlbiBibG9jb3MgY2FzdWFsaXphZG9zIChEQkMpDQo+IExldHVyYSBkb3MgZGFkb3MgbWV0b2RvIERCQw0KDQpgYGB7cn0NCmRhZG9zX2RiYyA8LSByZWFkX2V4Y2VsKCJDOi9Vc2Vycy9Bc3VzL09uZURyaXZlL0VzY3JpdG9yaW8vUiBNRVRBQk9MSVRPL0FVTEEyRElDLnhsc3giLCBzaGVldCA9IDIpDQpgYGANCj4gRGF0YSBmcmFtZSBkb3MgZGFkb3MgREJDDQoNCmBgYHtyfQ0Kc3RyKGRhZG9zX2RiYykNCmBgYA0KPlRyYW5mb3JtYcOnw6NvIGRvcyB0cmF0YW1lbnRvIGUgYmxvY29zIHBhcmEgZmFjdG9yIG1ldG9kbyBEQkMNCg0KYGBge3J9DQpkYWRvc19kYmMgPC0gdHJhbnNmb3JtKGRhZG9zX2RiYywgVHJhdGFtZW50byA9IGFzLmZhY3RvcihUcmF0YW1lbnRvKSwgYmxvY29zID1hcy5mYWN0b3IoYmxvY29zKSkNCnN0cihkYWRvc19kYmMpDQpgYGANCiMgQW5vdmEgZG9zIGRhZG9zIHBhcmEgREJDDQojIyBNb2RlbG8gZXN0YXTDrXN0aWNvOiB5X2lqID0gbSArIGJfaiArIHRfaSArIGVfaWoNCiMjIEhpcMOzdGVzZXMNCiMjIyBIMDogbXUxID0gbXUyID0uLi49IG11SSA9IG11DQojIyMgSGE6IHBlbG8gbWVub3MgZHVhcyBtw6lkaWFzIHBvcHVsYWNpb25haXMgZGlmZXJlbSBlbnRyZSBzaS4NCmBgYHtyfQ0KbW9kX2RiYyA8LSBsbShSRVNVTFRBRE8gfiBibG9jb3MrVHJhdGFtZW50bywgZGF0YSA9IGRhZG9zX2RiYykNCmFub3ZhKG1vZF9kYmMpDQpgYGANCiMjIyBGb2kgYWNlaXRhIGEgaGlww7N0ZXNlIGFsdGVybmF0aXZhIChIYSksIGrDoSBxdWUgaMOhIGRpZmVyZW7Dp2FzIGVzdGF0w61zdGljYXMgZW0gYWxndW5zIGRvcyB0cmF0YW1lbnRvcy4NCg0KIyMgQ29uY2x1c8Ojbw0KIyMjIE5vcyBkb2lzIGRlbGluZWFtZW50b3MsIG9zIHRyYXRhbWVudG9zIGFwcmVzZW50YXJhbSBkaWZlcmVuw6dhcyBlc3RhdMOtc3RpY2FzLCBubyBlbnRhbnRvIGNvbmNsdWluZG8gcXVlIG8gREJDIHNlcmlhIGEgbWVsaG9yIGFsdGVybmF0aXZhIHBhcmEgYSBhbsOhbGlzZSwgasOhIHF1ZSBubyBEQkMgaG91dmUgZWZlaXRvIGRvIGJsb2NvLCBzZW5kbyBhc3NpbSB1bSBhbmFsaXNpcyBjb20gdW4gYW1iaWVudGUgbWFpcyBjb250cm9sYWRvLg==