Willinton Hernan Pinchao Pinchao
Uso dos delineamento inteiramente casualizado(DIC) e delineamento
blocos casualizado(DBC)
EXERCICIO
Leitura dos dados
Primeiras e últimas linhas da base de dados
Data frame dos dados
str(dados_dic)
tibble [28 × 2] (S3: tbl_df/tbl/data.frame)
$ Tratamento: chr [1:28] "P1" "P1" "P1" "P1" ...
$ RESULTADO : num [1:28] 358 380 353 360 284 249 259 242 273 222 ...
Analisis descritiva dos dados
Média geral dos dados
(ybar <- mean(dados_dic$RESULTADO))
[1] 275.3214
Média, desvio padrão e erro padrão da média dos tratamentos.
1. Modelo anova para DIC.
Modelo estatístico: y_ij = m + t_i + e_ij
Hipóteses
H0: mu1 = mu2 =…= muI = mu
Ha: pelo menos duas médias populacionais diferem entre si.
anova(mod_dic)
Analysis of Variance Table
Response: RESULTADO
Df Sum Sq Mean Sq F value Pr(>F)
Tratamento 6 53738 8956.3 28.74 0.00000000437 ***
Residuals 21 6544 311.6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Com o resultado final, foi aceita a hipótese alternativa (Ha), já
que há diferença em alguns dos tratamentos apresentados, o que significa
que alguns dos tratamentos de produção de eucalipto apresentam valores
significativamente diferentes.
2. Metodo Delineamento en blocos casualizados (DBC)
Letura dos dados metodo DBC
Data frame dos dados DBC
str(dados_dbc)
tibble [28 × 3] (S3: tbl_df/tbl/data.frame)
$ Tratamento: chr [1:28] "P1" "P1" "P1" "P1" ...
$ blocos : num [1:28] 1 2 3 4 1 2 3 4 1 2 ...
$ RESULTADO : num [1:28] 358 380 353 360 284 249 259 242 273 222 ...
Tranformação dos tratamento e blocos para factor metodo DBC
str(dados_dbc)
'data.frame': 28 obs. of 3 variables:
$ Tratamento: Factor w/ 7 levels "P1","P2","P3",..: 1 1 1 1 2 2 2 2 3 3 ...
$ blocos : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...
$ RESULTADO : num 358 380 353 360 284 249 259 242 273 222 ...
Anova dos dados para DBC
Modelo estatístico: y_ij = m + b_j + t_i + e_ij
Hipóteses
H0: mu1 = mu2 =…= muI = mu
Ha: pelo menos duas médias populacionais diferem entre si.
anova(mod_dbc)
Analysis of Variance Table
Response: RESULTADO
Df Sum Sq Mean Sq F value Pr(>F)
blocos 3 2519 839.6 3.754 0.02964 *
Tratamento 6 53738 8956.3 40.047 0.000000001874 ***
Residuals 18 4026 223.6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Foi aceita a hipótese alternativa (Ha), já que há diferenças
estatísticas em alguns dos tratamentos.
Conclusão
Nos dois delineamentos, os tratamentos apresentaram diferenças
estatísticas, no entanto concluindo que o DBC seria a melhor alternativa
para a análise, já que no DBC houve efeito do bloco, sendo assim um
analisis com un ambiente mais controlado.
LS0tDQp0aXRsZTogIkFUSVZJREFERSAwMSBDRU41ODE1Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBBVElWSURBREUgMDEgQ0VONTgxNQ0KICBwZGZfZG9jdW1lbnQ6IEFUSVZJREFERSAwMSBDRU41ODE1DQogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KIyMjIFdpbGxpbnRvbiBIZXJuYW4gUGluY2hhbyBQaW5jaGFvDQojIFVzbyBkb3MgZGVsaW5lYW1lbnRvIGludGVpcmFtZW50ZSBjYXN1YWxpemFkbyhESUMpIGUgZGVsaW5lYW1lbnRvIGJsb2NvcyBjYXN1YWxpemFkbyhEQkMpDQojIyBFWEVSQ0lDSU8NCiMjIyBQcm9kdcOnw6NvIGVtIG1ldHJvcyBjw7piaWNvcyBwb3IgaGVjdGFyZSBkZSB1bSBleHBlcmltZW50byBjb20gNCBibG9jb3MgY2FzdWFsaXphZG9zIGUgNyBwcm9jZWTDqm5jaWFzIGRlIEV1Y2FseXB0dXMgZ3JhbmRpcy4NCj4gTGltcGV6YSBkYXMgamFuZWxhcyANCg0KYGBge3IgZWNobz1UUlVFfQ0Kb3B0aW9ucyhzY2lwZW4gPSA5OTkpDQpybShsaXN0ID0gbHMoKSkgDQpnYyhyZXNldCA9IFRSVUUpICAgICANCmdyYXBoaWNzLm9mZigpICAgICAgDQpgYGANCj4gUHJpbmNpcGFpcyBwYWNvdGVzIHVzYWRvcw0KDQpgYGB7cn0NCnBhY290ZXMgPC0gYygicmVhZHhsIiwNCiAgICAgICAgICAgICAidGlkeXZlcnNlIikgDQpgYGANCj4gT3MgcGFjb3RlcyBlc3TDo28gaW50YWxhZG9zPw0KDQpgYGB7cn0NCmlmKHN1bShhcy5udW1lcmljKCFwYWNvdGVzICVpbiUgaW5zdGFsbGVkLnBhY2thZ2VzKCkpKSAhPSAwKXsNCiAgaW5zdGFsYWRvciA8LSBwYWNvdGVzWyFwYWNvdGVzICVpbiUgaW5zdGFsbGVkLnBhY2thZ2VzKCldDQogIGZvcihpIGluIDE6bGVuZ3RoKGluc3RhbGFkb3IpKSB7DQogICAgaW5zdGFsbC5wYWNrYWdlcyhpbnN0YWxhZG9yLCBkZXBlbmRlbmNpZXMgPSBUKQ0KICAgIGJyZWFrKCl9DQogIHNhcHBseShwYWNvdGVzLCByZXF1aXJlLCBjaGFyYWN0ZXIgPSBUKSANCn0gZWxzZSB7DQogIHNhcHBseShwYWNvdGVzLCByZXF1aXJlLCBjaGFyYWN0ZXIgPSBUKSANCn0NCmBgYA0KIyMjIExlaXR1cmEgZG9zIGRhZG9zDQoNCmBgYHtyIGVjaG89VFJVRX0NCg0KZGFkb3NfZGljIDwtIHJlYWRfZXhjZWwoIkM6L1VzZXJzL0FzdXMvT25lRHJpdmUvRXNjcml0b3Jpby9SIE1FVEFCT0xJVE8vQVVMQTJESUMueGxzeCIsIHNoZWV0ID0gMSkNCg0KYGBgDQojIyMgUHJpbWVpcmFzIGUgw7psdGltYXMgbGluaGFzIGRhIGJhc2UgZGUgZGFkb3MNCmBgYHtyfQ0KY2F0KCJQcmltZWlyYXMgZSDDumx0aW1hcyBsaW5oYXMgZGEgYmFzZSBkZSBkYWRvczpcbiIpDQpwcmludChoZWFkKGRhZG9zX2RpYykpOyBwcmludCh0YWlsKGRhZG9zX2RpYykpDQpgYGANCiMjIyBEYXRhIGZyYW1lIGRvcyBkYWRvcyANCmBgYHtyfQ0Kc3RyKGRhZG9zX2RpYykNCmBgYA0KIyMjIFRyYW5zZm9ybWHDp8OjbyBkb3MgdHJhdGFtZW50b3MgZGUgY2Fyw6F0ZXIgZW0gZmF0b3IsIGRhZG9zIHBhcmEgRElDLiANCg0KYGBge3IgQU5PVkEsIGVjaG89VFJVRX0NCmRhZG9zX2RpYyA8LSB0cmFuc2Zvcm0oZGFkb3NfZGljLCBUcmF0YW1lbnRvID0gYXMuZmFjdG9yKFRyYXRhbWVudG8pKQ0KYGBgDQoNCmBgYHtyfQ0Kc3RyKGRhZG9zX2RpYykNCmBgYA0KIyMgQW5hbGlzaXMgZGVzY3JpdGl2YSBkb3MgZGFkb3MNCiMjIyBNw6lkaWEgZ2VyYWwgZG9zIGRhZG9zIA0KYGBge3J9DQooeWJhciA8LSBtZWFuKGRhZG9zX2RpYyRSRVNVTFRBRE8pKQ0KYGBgDQojIyMgTcOpZGlhLCBkZXN2aW8gcGFkcsOjbyBlIGVycm8gcGFkcsOjbyBkYSBtw6lkaWEgZG9zIHRyYXRhbWVudG9zLg0KDQpgYGB7cn0NCmVzdGF0X2Rlc2NyX2RpYyA8LSBkYWRvc19kaWMgJT4lDQogIGdyb3VwX2J5KFRyYXRhbWVudG8pICU+JSBzdW1tYXJpc2UoDQogICAgbWVkaWFfdHJhdCA9IG1lYW4oUkVTVUxUQURPLCBuYS5ybSA9IFRSVUUpLA0KICAgIGRlc3Zpb190cmF0ID0gc2QoUkVTVUxUQURPLCBuYS5ybSA9IFRSVUUpLA0KICAgIEVQTSA9ZGVzdmlvX3RyYXQvc3FydChsZW5ndGgoUkVTVUxUQURPKSkpDQplc3RhdF9kZXNjcl9kaWMNCmBgYA0KIyAxLiBNb2RlbG8gYW5vdmEgcGFyYSBESUMuDQojIyBNb2RlbG8gZXN0YXTDrXN0aWNvOiB5X2lqID0gbSArIHRfaSArIGVfaWoNCiMjIEhpcMOzdGVzZXMNCiMjIyBIMDogbXUxID0gbXUyID0uLi49IG11SSA9IG11DQojIyMgSGE6IHBlbG8gbWVub3MgZHVhcyBtw6lkaWFzIHBvcHVsYWNpb25haXMgZGlmZXJlbSBlbnRyZSBzaS4NCmBgYHtyfQ0KbW9kX2RpYyA8LSBsbShSRVNVTFRBRE8gfiBUcmF0YW1lbnRvLCBkYXRhID0gZGFkb3NfZGljKQ0KYW5vdmEobW9kX2RpYykNCmBgYA0KIyMjIENvbSBvIHJlc3VsdGFkbyBmaW5hbCwgZm9pIGFjZWl0YSBhIGhpcMOzdGVzZSBhbHRlcm5hdGl2YSAoSGEpLCBqw6EgcXVlIGjDoSBkaWZlcmVuw6dhIGVtIGFsZ3VucyBkb3MgdHJhdGFtZW50b3MgYXByZXNlbnRhZG9zLCBvIHF1ZSBzaWduaWZpY2EgcXVlIGFsZ3VucyBkb3MgdHJhdGFtZW50b3MgZGUgcHJvZHXDp8OjbyBkZSBldWNhbGlwdG8gYXByZXNlbnRhbSB2YWxvcmVzIHNpZ25pZmljYXRpdmFtZW50ZSBkaWZlcmVudGVzLg0KIyMgMi4gTWV0b2RvIERlbGluZWFtZW50byBlbiBibG9jb3MgY2FzdWFsaXphZG9zIChEQkMpDQo+IExldHVyYSBkb3MgZGFkb3MgbWV0b2RvIERCQw0KDQpgYGB7cn0NCmRhZG9zX2RiYyA8LSByZWFkX2V4Y2VsKCJDOi9Vc2Vycy9Bc3VzL09uZURyaXZlL0VzY3JpdG9yaW8vUiBNRVRBQk9MSVRPL0FVTEEyRElDLnhsc3giLCBzaGVldCA9IDIpDQpgYGANCj4gRGF0YSBmcmFtZSBkb3MgZGFkb3MgREJDDQoNCmBgYHtyfQ0Kc3RyKGRhZG9zX2RiYykNCmBgYA0KPlRyYW5mb3JtYcOnw6NvIGRvcyB0cmF0YW1lbnRvIGUgYmxvY29zIHBhcmEgZmFjdG9yIG1ldG9kbyBEQkMNCg0KYGBge3J9DQpkYWRvc19kYmMgPC0gdHJhbnNmb3JtKGRhZG9zX2RiYywgVHJhdGFtZW50byA9IGFzLmZhY3RvcihUcmF0YW1lbnRvKSwgYmxvY29zID1hcy5mYWN0b3IoYmxvY29zKSkNCnN0cihkYWRvc19kYmMpDQpgYGANCiMgQW5vdmEgZG9zIGRhZG9zIHBhcmEgREJDDQojIyBNb2RlbG8gZXN0YXTDrXN0aWNvOiB5X2lqID0gbSArIGJfaiArIHRfaSArIGVfaWoNCiMjIEhpcMOzdGVzZXMNCiMjIyBIMDogbXUxID0gbXUyID0uLi49IG11SSA9IG11DQojIyMgSGE6IHBlbG8gbWVub3MgZHVhcyBtw6lkaWFzIHBvcHVsYWNpb25haXMgZGlmZXJlbSBlbnRyZSBzaS4NCmBgYHtyfQ0KbW9kX2RiYyA8LSBsbShSRVNVTFRBRE8gfiBibG9jb3MrVHJhdGFtZW50bywgZGF0YSA9IGRhZG9zX2RiYykNCmFub3ZhKG1vZF9kYmMpDQpgYGANCiMjIyBGb2kgYWNlaXRhIGEgaGlww7N0ZXNlIGFsdGVybmF0aXZhIChIYSksIGrDoSBxdWUgaMOhIGRpZmVyZW7Dp2FzIGVzdGF0w61zdGljYXMgZW0gYWxndW5zIGRvcyB0cmF0YW1lbnRvcy4NCg0KIyMgQ29uY2x1c8Ojbw0KIyMjIE5vcyBkb2lzIGRlbGluZWFtZW50b3MsIG9zIHRyYXRhbWVudG9zIGFwcmVzZW50YXJhbSBkaWZlcmVuw6dhcyBlc3RhdMOtc3RpY2FzLCBubyBlbnRhbnRvIGNvbmNsdWluZG8gcXVlIG8gREJDIHNlcmlhIGEgbWVsaG9yIGFsdGVybmF0aXZhIHBhcmEgYSBhbsOhbGlzZSwgasOhIHF1ZSBubyBEQkMgaG91dmUgZWZlaXRvIGRvIGJsb2NvLCBzZW5kbyBhc3NpbSB1bSBhbmFsaXNpcyBjb20gdW4gYW1iaWVudGUgbWFpcyBjb250cm9sYWRvLg==