TODO Figure out what to do with the 3.8 year old, oops
TODO figure out what’s up with game 80 where video cuts out?
TODO may want to verify transcripts !! (found possible errors when fixing off-by-one labelling of description <-> row)
[x] Logistic model of accuracy: correct ~ trialNum + (trialNum|game) + (1|target) (prior normal(0,1) for beta and sd, lkj(1) for correlation)
## Warning: There were 2 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: bernoulli
## Links: mu = logit
## Formula: correct ~ trial + (trial | gameId) + (1 | target)
## Data: filter(all_data, !is.na(repNum)) (Number of observations: 465)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~gameId (Number of levels: 31)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 0.55 0.37 0.03 1.42 1.00 1263
## sd(trial) 0.05 0.03 0.00 0.13 1.01 607
## cor(Intercept,trial) -0.32 0.55 -0.98 0.90 1.00 995
## Tail_ESS
## sd(Intercept) 1962
## sd(trial) 1205
## cor(Intercept,trial) 1759
##
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.26 0.26 0.01 0.99 1.00 1586 1895
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 1.75 0.44 0.91 2.66 1.00 3067 2388
## trial 0.01 0.03 -0.06 0.07 1.00 3180 2371
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
no effect of trial on accuracy; accuracy generally high
[x] Linear model of description length: words ~ trialNum + (trialNum|game) + (1|target) (prior intercept of normal(5,10), beta and sd priors of normal(0,5), and correlation of lkj(1))
## Warning: There were 3 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: words ~ trial + (trial | gameId) + (1 | target)
## Data: filter(all_data, !is.na(repNum)) (Number of observations: 465)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~gameId (Number of levels: 31)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 1.75 0.41 0.95 2.58 1.00 1479
## sd(trial) 0.04 0.03 0.00 0.11 1.01 602
## cor(Intercept,trial) 0.19 0.52 -0.87 0.97 1.00 3059
## Tail_ESS
## sd(Intercept) 2190
## sd(trial) 1196
## cor(Intercept,trial) 2188
##
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.83 0.72 0.13 2.83 1.00 1152 1759
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.36 0.72 1.97 4.80 1.00 1891 1901
## trial 0.03 0.03 -0.03 0.09 1.00 6333 3258
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 2.93 0.10 2.74 3.14 1.00 6112 2877
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
no effect of trial on length; generally pretty short throughout
[x] Speed: time_seconds ~ trialNum + (trialNum|game) + (1|target) (prior intercept of normal(60,100), beta and sd priors of (0,20) and correlation of lkj(1))
## Warning: There were 3 divergent transitions after warmup. Increasing
## adapt_delta above 0.95 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: time_seconds ~ trial + (trial | gameId) + (1 | target)
## Data: mutate(filter(all_data, !is.na(repNum)), time_seco (Number of observations: 465)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~gameId (Number of levels: 31)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 11.21 2.24 7.33 16.13 1.00 1477
## sd(trial) 0.54 0.16 0.25 0.88 1.00 1600
## cor(Intercept,trial) -0.92 0.08 -1.00 -0.72 1.00 1424
## Tail_ESS
## sd(Intercept) 1661
## sd(trial) 1928
## cor(Intercept,trial) 2033
##
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 4.16 3.26 1.06 13.20 1.00 1103 1325
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 23.77 3.55 16.92 31.27 1.00 1473 1139
## trial -0.71 0.15 -1.01 -0.41 1.01 2664 2550
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 10.60 0.36 9.92 11.32 1.00 4367 2987
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
kids get faster over time (by about .7 seconds a pop)
We will interpret the fixed effect of trial number as being about changes in referring over time.
For utterance similarities, we will embed the describer’s descriptions using S-BERT and use cosine similarity as a proxy for utterance similarity.
We are unsure whether 4 blocks will be sufficient to see potential change over time, so we will
[x]* compare similarities of utterances between different games v within one game v within one speaker: sim ~ same_game + same_speaker + (1|target)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: sim ~ same_game + same_speaker + (1 | target)
## Data: mutate(filter(sims, target1 == target2), target = (Number of observations: 26001)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.08 0.02 0.05 0.13 1.00 1313 1753
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.34 0.04 0.26 0.42 1.01 990 1513
## same_game 0.25 0.01 0.22 0.27 1.00 2074 2356
## same_speaker 0.08 0.02 0.04 0.12 1.00 2036 2048
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.24 0.00 0.24 0.24 1.00 3793 2797
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
utterances from within the same game are more similar (.34 across games v .59 within), smaller effect of same speaker(+.08, so .67)
[x]* compare similarities of utterances to the last utterance within a game: sim_to_last ~ earlier_block + same_speaker + (1|game) + (1|target)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: sim ~ earlier + same_speaker + (1 | game) + (1 | target)
## Data: mutate(filter(filter(sims, later == 4), game1 == g (Number of observations: 328)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~game (Number of levels: 29)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.14 0.02 0.10 0.18 1.00 2187 2153
##
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.05 0.02 0.01 0.10 1.00 1203 690
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.48 0.06 0.37 0.60 1.00 2154 2796
## earlier 0.06 0.02 0.02 0.09 1.00 5062 2820
## same_speaker 0.06 0.03 -0.00 0.12 1.00 4948 2976
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.29 0.01 0.27 0.31 1.00 4216 3394
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
utterances do get (slightly) more similar to last utterance over time, with a probable bump if same speaker
[x]* compare similarities of utterances to the next utterance: sim_to_next ~ earlier_block + same_speaker + (1|game) + (1|target)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: sim ~ earlier + same_speaker + (1 | game) + (1 | target)
## Data: mutate(filter(filter(sims, later == earlier + 1), (Number of observations: 334)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~game (Number of levels: 30)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.16 0.02 0.12 0.20 1.00 1841 2405
##
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.05 0.02 0.01 0.10 1.00 1729 1373
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.55 0.06 0.43 0.67 1.00 2026 2689
## earlier 0.03 0.02 -0.01 0.07 1.00 4815 2831
## same_speaker 0.07 0.03 0.01 0.13 1.00 4344 2813
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.29 0.01 0.27 0.31 1.00 3622 2929
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
utterances are again more similar from same speaker, but similarity to next is not clearly increasing over time
[x]* compare the similarity level of descriptions from the same block in different games: sim ~ block + (1|target)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: sim ~ block + (1 | target)
## Data: mutate(filter(filter(sims, later == earlier), game (Number of observations: 6335)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Multilevel Hyperparameters:
## ~target (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.08 0.02 0.05 0.13 1.00 1224 1776
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.36 0.04 0.28 0.45 1.01 871 1083
## block -0.01 0.00 -0.01 -0.00 1.00 3735 2286
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.24 0.00 0.24 0.25 1.00 2339 2122
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
distance of descriptions across games is stable (not seeing divergence)
Priors for the above similarity models: normal(.5,.2) for intercept, normal(0,.1) for beta, and normal(0,.05) for sd.
We will also qualitatively explore children’s turn-taking structure and how they understand each other.
TODO: the qualitative thing