GSE243609-Medulloblastoma tumorigenesis. samples: cerebellum of Ptch1- Atoh1EGFP mice at P7, 6 weeks, and adulthood.

This file is at p7 (neural precursors).

Public on May 03, 2024

Using ATAC-seq analysis from GNPs to MBSHH we discovered a massive modification in chromatin accessibility during MBSHH formation. Next, using integrative bioinformatics, we identified genes of the nuclear factor I (NFI) family that function as oncogenes on the MBSHH epigenome. We demonstrate not only that these genes are essential in the early stages of murine MBSHHs tumorigenesis, but also that their genetic silencing inhibits tumor growth in murine and human MBSHHs in vitro and in vivo. Finally, we discovered that NFIA/B are post-translationally modified by an activating methylation in MBSHH, making it possibility to target this pathway. Further studies revealed that pharmacological inhibition of this methylated NFIA/B hindered tumor proliferation, demonstrating the requirement of NFIA/B for tumor progression. Collectively our data shed light on the mechanism underlying the epigenome during the formation of the most malignant pediatric brain tumor and emphasizes the importance of deciphering cancer-specific epigenome for identification of new therapeutic avenues.

Chromium Single-Cell Multiome ATAC + Gene Expression for mouse medulloblastoma model.

Japanese Foundation for Cancer Research

Shiraishi R, Cancila G, Kumegawa K, Maruyama R, Ayrault O, Kawauchi D

NextSeq 550 (Mus musculus)

All raw fastq files were downloaded from NCBI and aligned with STAR (mm10) using the 10x cellranger-arc pipeline for multiome data processing.

## Loading required package: SeuratObject
## Loading required package: sp
## 
## Attaching package: 'SeuratObject'
## The following objects are masked from 'package:base':
## 
##     intersect, t
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ purrr::reduce() masks Signac::reduce()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## 
## Attaching package: 'htmlwidgets'
## 
## 
## The following object is masked from 'package:Seurat':
## 
##     JS
## 
## 
## The following object is masked from 'package:SeuratObject':
## 
##     JS
## 
## 
## Loading required package: Seurat.utils
## 
## Loading required package: CodeAndRoll2
## 
## Loading required package: Stringendo
## 
## 
## Attaching package: 'CodeAndRoll2'
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     symdiff
## 
## 
## Loading required package: ggExpress
## 
## Loading required package: ggpubr
## 
## Loading required package: MarkdownHelpers
## 
## Loading required package: magrittr
## 
## 
## Attaching package: 'magrittr'
## 
## 
## The following object is masked from 'package:purrr':
## 
##     set_names
## 
## 
## The following object is masked from 'package:tidyr':
## 
##     extract
## 
## 
## 
## 
## 
## Attaching package: 'plotly'
## 
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## The following object is masked from 'package:graphics':
## 
##     layout
## 
## 
## Loading required package: ensembldb
## 
## Loading required package: BiocGenerics
## 
## 
## Attaching package: 'BiocGenerics'
## 
## 
## The following objects are masked from 'package:lubridate':
## 
##     intersect, setdiff, union
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     combine, intersect, setdiff, union
## 
## 
## The following object is masked from 'package:SeuratObject':
## 
##     intersect
## 
## 
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## 
## 
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##     colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##     get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##     match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##     Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,
##     tapply, union, unique, unsplit, which.max, which.min
## 
## 
## Loading required package: GenomicRanges
## 
## Loading required package: stats4
## 
## Loading required package: S4Vectors
## 
## 
## Attaching package: 'S4Vectors'
## 
## 
## The following object is masked from 'package:plotly':
## 
##     rename
## 
## 
## The following objects are masked from 'package:lubridate':
## 
##     second, second<-
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, rename
## 
## 
## The following object is masked from 'package:tidyr':
## 
##     expand
## 
## 
## The following object is masked from 'package:utils':
## 
##     findMatches
## 
## 
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## 
## 
## Loading required package: IRanges
## 
## 
## Attaching package: 'IRanges'
## 
## 
## The following object is masked from 'package:plotly':
## 
##     slice
## 
## 
## The following object is masked from 'package:lubridate':
## 
##     %within%
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     collapse, desc, slice
## 
## 
## The following object is masked from 'package:purrr':
## 
##     reduce
## 
## 
## The following object is masked from 'package:sp':
## 
##     %over%
## 
## 
## Loading required package: GenomeInfoDb
## 
## 
## Attaching package: 'GenomicRanges'
## 
## 
## The following object is masked from 'package:magrittr':
## 
##     subtract
## 
## 
## Loading required package: GenomicFeatures
## 
## Loading required package: AnnotationDbi
## 
## Loading required package: Biobase
## 
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## 
## 
## Attaching package: 'Biobase'
## 
## 
## The following objects are masked from 'package:CodeAndRoll2':
## 
##     rowMax, rowMedians, rowMin
## 
## 
## 
## Attaching package: 'AnnotationDbi'
## 
## 
## The following object is masked from 'package:plotly':
## 
##     select
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## 
## Loading required package: AnnotationFilter
## 
## 
## Attaching package: 'AnnotationFilter'
## 
## 
## The following object is masked from 'package:magrittr':
## 
##     not
## 
## 
## 
## Attaching package: 'ensembldb'
## 
## 
## The following object is masked from 'package:plotly':
## 
##     filter
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     filter
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## Loading required package: SummarizedExperiment
## 
## Loading required package: MatrixGenerics
## 
## Loading required package: matrixStats
## 
## 
## Attaching package: 'matrixStats'
## 
## 
## The following objects are masked from 'package:Biobase':
## 
##     anyMissing, rowMedians
## 
## 
## The following objects are masked from 'package:CodeAndRoll2':
## 
##     colMedians, rowMedians
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     count
## 
## 
## 
## Attaching package: 'MatrixGenerics'
## 
## 
## The following objects are masked from 'package:matrixStats':
## 
##     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##     colWeightedMeans, colWeightedMedians, colWeightedSds,
##     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##     rowWeightedSds, rowWeightedVars
## 
## 
## The following object is masked from 'package:Biobase':
## 
##     rowMedians
## 
## 
## The following objects are masked from 'package:CodeAndRoll2':
## 
##     colMedians, rowMedians
## 
## 
## 
## Attaching package: 'SummarizedExperiment'
## 
## 
## The following object is masked from 'package:Seurat':
## 
##     Assays
## 
## 
## The following object is masked from 'package:SeuratObject':
## 
##     Assays
## 
## 
## 
## Attaching package: 'SingleR'
## 
## 
## The following objects are masked from 'package:celldex':
## 
##     BlueprintEncodeData, DatabaseImmuneCellExpressionData,
##     HumanPrimaryCellAtlasData, ImmGenData, MonacoImmuneData,
##     MouseRNAseqData, NovershternHematopoieticData
##  rna 
## 7212
## Normalizing layer: counts
## Finding variable features for layer counts

## Centering and scaling data matrix
## PC_ 1 
## Positive:  Sparcl1, Sparc, Plpp3, Ptprm, Atp1a2, Ptprz1, Nid1, Sox6, Calcrl, Ednrb 
##     Slc1a3, Tnc, Col4a1, Adamts9, Npas3, Pde7b, Lama2, Nckap5, Itpr2, Ncam2 
##     Ldb2, Plekhg1, Plce1, Limch1, Col4a2, Gria1, Cpq, Apoe, Rfx4, Cdh11 
## Negative:  Grik2, Cacna2d1, Reln, Cadps2, Dcc, Erbb4, Hs3st5, Hs6st3, St18, Ndst3 
##     Fam155a, Trhde, Nrg1, Rasgef1b, Robo2, Kctd8, Unc5c, Plcb1, Xkr4, Stxbp5l 
##     Kcnd2, Zmat4, Fgf13, Ppp2r2b, Cntnap2, chr9:65514433-65515428, March1, Grm1, Rps6ka3, chr8:23477352-23478271 
## PC_ 2 
## Positive:  Nrxn1, Grid2, Luzp2, Anks1b, Pcdh9, Lrrc4c, Lsamp, Cadm2, Csmd2, Lrp1b 
##     Zfpm2, Ncam2, Ptprz1, Csmd1, Cntn1, Unc5c, Sox6, Erbb4, Nrxn3, Malat1 
##     Pcdh7, Pde4b, Slc4a4, Nlgn1, Tmtc2, Ptprt, Npas3, Pde4d, Grid1, Macrod2 
## Negative:  Fli1, Cldn5, Adgrl4, Adgrf5, Mecom, Flt1, Cdh5, Selenop, Itm2a, Rasgrp3 
##     Cd93, Rbpms, Kdr, Abcb1a, Igfbp7, Egfl7, Tek, Ets1, Lama4, Epas1 
##     Slc40a1, Slc38a5, Col4a1, Eng, Itga1, Prkch, Erg, Tie1, Ctla2a, Slco1c1 
## PC_ 3 
## Positive:  Tnc, Gria1, 8030451A03Rik, Ednrb, Plce1, Aldh1l1, Aqp4, Pla2g7, Rfx4, Mir100hg 
##     Slc1a3, Gdf10, Gpc6, Paqr8, chr2:98666667-98667487, Fabp7, Lrig1, Col23a1, Npas3, Pax3 
##     Ttyh1, Cyp26b1, Plpp3, Grm3, Cacnb2, Spock3, chr6:94631019-94631945, Fat3, chr9:65514433-65515428, Pard3b 
## Negative:  Pde4d, Ccser1, Grin2b, Grm1, Arpp21, Cacna1e, Zmat4, Kcnd2, Nrg1, Erbb4 
##     Ndst3, Grik2, Xkr4, Hivep3, Camk2d, Plcb1, Tmtc2, Rps6ka3, Cadps2, Reln 
##     Cadm2, Unc5c, Nrxn1, Lrp1b, Anks1b, Stxbp5l, Prkn, Plxna2, Tenm2, Galntl6 
## PC_ 4 
## Positive:  Col3a1, Col1a2, Dcn, Col1a1, Igf2, Slc6a13, Cped1, Slc6a20a, Itih5, Sidt1 
##     Col6a1, Slc7a11, Apod, Tbx18, Adamts12, Vtn, Bmp6, Col4a6, Lama2, Col4a5 
##     Col26a1, Hlf, Cp, Nid2, Cxcl12, Trpm3, Itga8, Lama1, Lum, Abca8a 
## Negative:  Tnr, Gpr17, Ppp1r16b, Ptpre, Tmem132d, Sox6, Sox10, Dnm3, Bcan, Tmem163 
##     Sntg1, Sulf2, 9630013A20Rik, Dpp10, Slc9a9, Lhfpl3, Xylt1, Itpr2, 9530059O14Rik, Pllp 
##     Bcas1os2, Fli1, Gm16168, Lrrtm4, Tns3, Ncam2, Cspg5, Enpp6, Bcas1, Brinp3 
## PC_ 5 
## Positive:  Col3a1, Dcn, Atp1a2, Col1a1, Cped1, Apod, Slc6a13, Slc7a11, Igf2, Col1a2 
##     Sidt1, Vtn, Tbx18, Colec12, Adamts12, Slc6a20a, Cfh, Nid1, Col4a6, Col6a1 
##     Lama1, Spock3, Lama2, Nid2, Cdh11, Dlc1, Grm3, Itih5, Col23a1, Cp 
## Negative:  Cfap54, Dnah12, Spag16, Dnah6, Cfap299, Rgs22, Spef2, Wdr49, Ak9, Lrriq1 
##     Dnah11, Hydin, Gm973, Cfap44, Ak7, Agbl4, Dnah5, Spag17, 3300002A11Rik, Dnah9 
##     Kif6, Cfap69, Ttc29, Spata17, Cfap65, Ccdc162, Ccdc146, Dnah3, Tmem232, Armc4
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 22:38:57 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:38:57 Read 6134 rows and found 30 numeric columns
## 22:38:57 Using Annoy for neighbor search, n_neighbors = 30
## 22:38:57 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:38:57 Writing NN index file to temp file /tmp/Rtmpp9Xq0H/file58b611cbc54e
## 22:38:57 Searching Annoy index using 1 thread, search_k = 3000
## 22:38:58 Annoy recall = 100%
## 22:38:59 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:39:01 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:39:01 Commencing optimization for 500 epochs, with 257792 positive edges
## 22:39:06 Optimization finished

## Computing nearest neighbor graph
## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6134
## Number of edges: 226324
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9459
## Number of communities: 7
## Elapsed time: 0 seconds
## 
##        Astrocytes   Dendritic cells Endothelial cells  Epithelial cells 
##               162                 3                52                28 
##       Fibroblasts      Granulocytes       Macrophages         Microglia 
##                55                 1                17                37 
##         Monocytes           Neurons  Oligodendrocytes           T cells 
##                 2              5711                30                 3
## 
##                 aNSCs            Astrocytes       Dendritic cells 
##                    56                   156                     2 
##     Endothelial cells             Ependymal           Fibroblasts 
##                    54                    27                     1 
## Fibroblasts activated Fibroblasts senescent          Granulocytes 
##                    52                     2                     1 
##           Macrophages             Microglia   Microglia activated 
##                    15                    35                     3 
##             Monocytes               Neurons     Neurons activated 
##                     3                  1720                    59 
##                  NPCs      Oligodendrocytes                  OPCs 
##                  3206                    30                   637 
##                 qNSCs               T cells 
##                     6                     3
##                    orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.1
## AAACAGCCAAAGGTAC-1        rna      14029         6931               0
## AAACAGCCAATGCCCG-1        rna       5632         2857               1
## AAACAGCCACCTCACC-1        rna      26092        10881               2
## AAACAGCCACGAACAG-1        rna      13607         5430               2
## AAACAGCCATAATCAC-1        rna       4378         2215               0
## AAACATGCAATTGCGC-1        rna      16135         7817               0
##                    seurat_clusters     gen_celltype fine_celltype
## AAACAGCCAAAGGTAC-1               0          Neurons          NPCs
## AAACAGCCAATGCCCG-1               1          Neurons       Neurons
## AAACAGCCACCTCACC-1               2          Neurons          NPCs
## AAACAGCCACGAACAG-1               2 Epithelial cells       Neurons
## AAACAGCCATAATCAC-1               0          Neurons          NPCs
## AAACATGCAATTGCGC-1               0          Neurons          NPCs

## 
##                  NPCs               Neurons                  OPCs 
##                  3206                  1720                   637 
## Fibroblasts activated            Astrocytes     Neurons activated 
##                    52                   156                    59 
##     Endothelial cells                 aNSCs             Microglia 
##                    54                    56                    35 
##             Ependymal      Oligodendrocytes               T cells 
##                    27                    30                     3 
##           Macrophages   Microglia activated                 qNSCs 
##                    15                     3                     6 
##             Monocytes Fibroblasts senescent           Fibroblasts 
##                     3                     2                     1 
##          Granulocytes       Dendritic cells 
##                     1                     2
##  [1] "NPCs"                  "Neurons"               "OPCs"                 
##  [4] "Fibroblasts activated" "Astrocytes"            "Neurons activated"    
##  [7] "Endothelial cells"     "aNSCs"                 "Microglia"            
## [10] "Ependymal"             "Oligodendrocytes"      "T cells"              
## [13] "Macrophages"           "Microglia activated"   "qNSCs"                
## [16] "Monocytes"             "Fibroblasts senescent" "Fibroblasts"          
## [19] "Granulocytes"          "Dendritic cells"
## Computing hash
## Extracting reads overlapping genomic regions
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## Warning in .merge_two_Seqinfo_objects(x, y): The 2 combined objects have no sequence levels in common. (Use
##   suppressWarnings() to suppress this warning.)
## GRanges object with 1763965 ranges and 5 metadata columns:
##                      seqnames          ranges strand |              tx_id
##                         <Rle>       <IRanges>  <Rle> |        <character>
##   ENSMUSE00001236884     chr3 3508030-3508332      + | ENSMUST00000108393
##   ENSMUSE00000676606     chr3 3634150-3634347      + | ENSMUST00000108394
##   ENSMUSE00001345708     chr3 3638059-3638230      + | ENSMUST00000108393
##   ENSMUSE00001345708     chr3 3638059-3638230      + | ENSMUST00000108394
##   ENSMUSE00000149313     chr3 3641223-3641317      + | ENSMUST00000108393
##                  ...      ...             ...    ... .                ...
##   ENSMUST00000082414    chrMT     10167-11544      + | ENSMUST00000082414
##   ENSMUST00000082418    chrMT     11742-13565      + | ENSMUST00000082418
##   ENSMUST00000082419    chrMT     13552-14070      - | ENSMUST00000082419
##   ENSMUST00000082421    chrMT     14145-15288      + | ENSMUST00000082421
##   ENSMUST00000084013    chrMT      9877-10173      + | ENSMUST00000084013
##                        gene_name            gene_id   gene_biotype     type
##                      <character>        <character>    <character> <factor>
##   ENSMUSE00001236884       Hnf4g ENSMUSG00000017688 protein_coding     exon
##   ENSMUSE00000676606       Hnf4g ENSMUSG00000017688 protein_coding     exon
##   ENSMUSE00001345708       Hnf4g ENSMUSG00000017688 protein_coding     exon
##   ENSMUSE00001345708       Hnf4g ENSMUSG00000017688 protein_coding     exon
##   ENSMUSE00000149313       Hnf4g ENSMUSG00000017688 protein_coding     exon
##                  ...         ...                ...            ...      ...
##   ENSMUST00000082414      mt-Nd4 ENSMUSG00000064363 protein_coding      cds
##   ENSMUST00000082418      mt-Nd5 ENSMUSG00000064367 protein_coding      cds
##   ENSMUST00000082419      mt-Nd6 ENSMUSG00000064368 protein_coding      cds
##   ENSMUST00000082421     mt-Cytb ENSMUSG00000064370 protein_coding      cds
##   ENSMUST00000084013     mt-Nd4l ENSMUSG00000065947 protein_coding      cds
##   -------
##   seqinfo: 22 sequences (1 circular) from mm10 genome
## ChromatinAssay data with 145308 features for 6361 cells
## Variable features: 0 
## Genome: mm10 
## Annotation present: TRUE 
## Motifs present: FALSE 
## Fragment files: 1
## Extracting TSS positions
## Extracting fragments at TSSs
## 
## Computing TSS enrichment score

## 
## High  Low 
## 6007   27

## Performing TF-IDF normalization
## Running SVD
## Scaling cell embeddings

## 22:46:35 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:46:35 Read 6007 rows and found 29 numeric columns
## 22:46:35 Using Annoy for neighbor search, n_neighbors = 30
## 22:46:35 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:46:35 Writing NN index file to temp file /tmp/Rtmpp9Xq0H/file58b6f7a4f97
## 22:46:35 Searching Annoy index using 1 thread, search_k = 3000
## 22:46:37 Annoy recall = 100%
## 22:46:38 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:46:40 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:46:40 Commencing optimization for 500 epochs, with 251932 positive edges
## 22:46:45 Optimization finished
## Computing nearest neighbor graph
## Computing SNN
## Extracting gene coordinates
## Warning in SingleFeatureMatrix(fragment = fragments[[x]], features = features,
## : 13 features are on seqnames not present in the fragment file. These will be
## removed.
## Extracting reads overlapping genomic regions
## Centering and scaling data matrix
## Warning: 1456 features of the features specified were not present in both the reference query assays. 
## Continuing with remaining 544 features.
## Running CCA
## Merging objects
## Finding neighborhoods
## Finding anchors
##  Found 16707 anchors
## Finding integration vectors
## Finding integration vector weights
## Predicting cell labels
## List of 2
##  $ legend.position: chr "none"
##  $ title          : chr "gene_expression"
##  - attr(*, "class")= chr [1:2] "theme" "gg"
##  - attr(*, "complete")= logi FALSE
##  - attr(*, "validate")= logi TRUE
## List of 2
##  $ legend.position: chr "none"
##  $ title          : chr "chromatin_accessibility"
##  - attr(*, "class")= chr [1:2] "theme" "gg"
##  - attr(*, "complete")= logi FALSE
##  - attr(*, "validate")= logi TRUE
##                                 tx_id gene_name            gene_id
## ENSMUST00000162607 ENSMUST00000162607      Gli2 ENSMUSG00000048402
##                      gene_biotype type           closest_region
## ENSMUST00000162607 protein_coding  cds chr1-119053302-119053329
##                                query_region distance
## ENSMUST00000162607 chr1-118834061-119054405        0

Here is a coverage plot for hedgehog activation marker GLI2.

Here is a tileplot of fragment enrichments at the GLI2 locus.

## Warning in asMethod(object): sparse->dense coercion: allocating vector of size
## 2.4 GiB

## 22:48:51 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:48:51 Read 6134 rows and found 15 numeric columns
## 22:48:51 Using Annoy for neighbor search, n_neighbors = 30
## 22:48:51 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:48:51 Writing NN index file to temp file /tmp/Rtmpp9Xq0H/file58b620babade
## 22:48:51 Searching Annoy index using 1 thread, search_k = 3000
## 22:48:53 Annoy recall = 100%
## 22:48:54 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:48:56 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:48:56 Commencing optimization for 500 epochs, with 251848 positive edges
## 22:49:01 Optimization finished
## Warning: Number of dimensions changing from 2 to 3

Here are the 3-dimensional scRNAseq and scATACseq UMAPs.

## 22:49:02 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:49:02 Read 6007 rows and found 29 numeric columns
## 22:49:02 Using Annoy for neighbor search, n_neighbors = 30
## 22:49:02 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:49:02 Writing NN index file to temp file /tmp/Rtmpp9Xq0H/file58b644e9ec7f
## 22:49:02 Searching Annoy index using 1 thread, search_k = 3000
## 22:49:04 Annoy recall = 100%
## 22:49:05 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:49:06 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:49:06 Commencing optimization for 500 epochs, with 251932 positive edges
## 22:49:12 Optimization finished
## Warning: Number of dimensions changing from 2 to 3
##  [1] "NPCs"                  "Neurons"               "Astrocytes"           
##  [4] "OPCs"                  "Fibroblasts activated" "Ependymal"            
##  [7] "Endothelial cells"     "Microglia"             "Oligodendrocytes"     
## [10] "T cells"
##                        umap_1     umap_2      umap_3
## TCAAGCTAGGCGAAAC-1 -0.6640886  1.7294044  0.30255266
## GAACCAAAGAGGATAT-1 -2.1087907 -1.6287875 12.38055757
## GCACATTAGTTGGCCA-1 -0.1347103 -0.9666887 -0.07426183
## CGTGACATCTTGCAAA-1 -0.9961666 -4.6471367  3.56368664
## TTTGTTGGTAACAGGG-1 -1.1919208 -0.5355835 -1.02610203
## GATAATCGTAACCTAG-1  0.4714787 -4.6105781  6.37907365

R version 4.4.1 (2024-06-14) – “Race for Your Life” Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu

RStudio 2024.04.2+764 “Chocolate Cosmos” Release (e4392fc9ddc21961fd1d0efd47484b43f07a4177, 2024-06-05) for Ubuntu Jammy Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) rstudio/2024.04.2+764 Chrome/120.0.6099.291 Electron/28.3.1 Safari/537.36, Quarto 1.4.555