GSE217511- Single-nucleus transcriptomics atlas of middle and late prenatal human cortical development.

samples: Single-nucleus transcriptomics (snRNA-seq) data was generated from fresh-frozen, macrodissected germinal matrix and cortical plate of 15 prenatal, non-pathological human postmortem samples from second and third trimester gestation, and from fresh-frozen, macrodissected basal ganglia and neocortex of 3 adult, non-pathological human postmortem controls. The germinal matrix was macrodissected at the level of the caudothalamic groove and the cortical plate from the adjacent frontoparietal neocortex; grossly equal amount of subjacent white matter was included for both dissections. For prenatal tissues, to consistently dissect the posterior germinal zone in prenatal brains of varying size, the length of the entire cortical surface was measured for each sample and tissue from the ventricular to the apical surface was dissected in the area three fourths of the length from the rostral aspect. For adult tissues, the neocortex was dissected at the level of the pre-central gyrus, Brodmann area 4, and the subventricular zone plus caudate were dissected at the level of the posterior basal ganglia adjacent to the dissected neocortex.

Public on Dec 01, 2022

Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.

Illumina NovaSeq 6000 (Homo sapiens)

Icahn School of Medicine at Mount Sinai

Susana R, Zarmeen M, Elisa F, Balagopal P, Bruno G, Robert S, Kristin B, Alexander T, Nadejda T

## Loading required package: SeuratObject
## Loading required package: sp
## 
## Attaching package: 'SeuratObject'
## The following objects are masked from 'package:base':
## 
##     intersect, t
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## 
## 
## clusterProfiler v4.12.5 Learn more at https://yulab-smu.top/contribution-knowledge-mining/
## 
## Please cite:
## 
## S Xu, E Hu, Y Cai, Z Xie, X Luo, L Zhan, W Tang, Q Wang, B Liu, R Wang,
## W Xie, T Wu, L Xie, G Yu. Using clusterProfiler to characterize
## multiomics data. Nature Protocols. 2024, doi:10.1038/s41596-024-01020-z
## 
## 
## Attaching package: 'clusterProfiler'
## 
## 
## The following object is masked from 'package:biomaRt':
## 
##     select
## 
## 
## The following object is masked from 'package:purrr':
## 
##     simplify
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## Loading required package: AnnotationDbi
## 
## Loading required package: stats4
## 
## Loading required package: BiocGenerics
## 
## 
## Attaching package: 'BiocGenerics'
## 
## 
## The following objects are masked from 'package:lubridate':
## 
##     intersect, setdiff, union
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     combine, intersect, setdiff, union
## 
## 
## The following object is masked from 'package:SeuratObject':
## 
##     intersect
## 
## 
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## 
## 
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##     colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##     get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##     match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##     Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,
##     tapply, union, unique, unsplit, which.max, which.min
## 
## 
## Loading required package: Biobase
## 
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## 
## Loading required package: IRanges
## 
## Loading required package: S4Vectors
## 
## 
## Attaching package: 'S4Vectors'
## 
## 
## The following object is masked from 'package:clusterProfiler':
## 
##     rename
## 
## 
## The following objects are masked from 'package:lubridate':
## 
##     second, second<-
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, rename
## 
## 
## The following object is masked from 'package:tidyr':
## 
##     expand
## 
## 
## The following object is masked from 'package:utils':
## 
##     findMatches
## 
## 
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## 
## 
## 
## Attaching package: 'IRanges'
## 
## 
## The following object is masked from 'package:clusterProfiler':
## 
##     slice
## 
## 
## The following object is masked from 'package:lubridate':
## 
##     %within%
## 
## 
## The following objects are masked from 'package:dplyr':
## 
##     collapse, desc, slice
## 
## 
## The following object is masked from 'package:purrr':
## 
##     reduce
## 
## 
## The following object is masked from 'package:sp':
## 
##     %over%
## 
## 
## 
## Attaching package: 'AnnotationDbi'
## 
## 
## The following object is masked from 'package:clusterProfiler':
## 
##     select
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## 
## 
## 
## Loading required package: GenomicRanges
## 
## Loading required package: GenomeInfoDb
## 
## Loading required package: SummarizedExperiment
## 
## Loading required package: MatrixGenerics
## 
## Loading required package: matrixStats
## 
## 
## Attaching package: 'matrixStats'
## 
## 
## The following objects are masked from 'package:Biobase':
## 
##     anyMissing, rowMedians
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     count
## 
## 
## 
## Attaching package: 'MatrixGenerics'
## 
## 
## The following objects are masked from 'package:matrixStats':
## 
##     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##     colWeightedMeans, colWeightedMedians, colWeightedSds,
##     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##     rowWeightedSds, rowWeightedVars
## 
## 
## The following object is masked from 'package:Biobase':
## 
##     rowMedians
## 
## 
## 
## Attaching package: 'SummarizedExperiment'
## 
## 
## The following object is masked from 'package:Seurat':
## 
##     Assays
## 
## 
## The following object is masked from 'package:SeuratObject':
## 
##     Assays
## 
## 
## Loading required package: SingleCellExperiment
## 
## 
## Attaching package: 'monocle3'
## 
## 
## The following objects are masked from 'package:Biobase':
## 
##     exprs, fData, fData<-, pData, pData<-
## 
## 
## 
## Attaching package: 'plotly'
## 
## 
## The following object is masked from 'package:AnnotationDbi':
## 
##     select
## 
## 
## The following object is masked from 'package:IRanges':
## 
##     slice
## 
## 
## The following object is masked from 'package:S4Vectors':
## 
##     rename
## 
## 
## The following object is masked from 'package:biomaRt':
## 
##     select
## 
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## The following object is masked from 'package:graphics':
## 
##     layout
## Warning: Some cell names are duplicated across objects provided. Renaming to
## enforce unique cell names.
## 
## 17wks 20wks 22wks 26wks 28yrs 38wks 45yrs 53yrs 
##  3000  3000  3000  3000  3000  3000  3000  3000
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

## Normalizing layer: counts.17wks
## Normalizing layer: counts.20wks
## Normalizing layer: counts.22wks
## Normalizing layer: counts.26wks
## Normalizing layer: counts.38wks
## Normalizing layer: counts.28yrs
## Normalizing layer: counts.45yrs
## Normalizing layer: counts.53yrs
## Finding variable features for layer counts.17wks
## Finding variable features for layer counts.20wks
## Finding variable features for layer counts.22wks
## Finding variable features for layer counts.26wks
## Finding variable features for layer counts.38wks
## Finding variable features for layer counts.28yrs
## Finding variable features for layer counts.45yrs
## Finding variable features for layer counts.53yrs
## Warning in scale_x_log10(): log-10 transformation introduced infinite values.
## Warning: Removed 2828 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Centering and scaling data matrix
## PC_ 1 
## Positive:  AGBL4, DLGAP2, FGF14, OPCML, FRMPD4, STXBP5L, RYR2, GRM5, CSMD1, CACNA2D3 
##     FGF12, MTUS2, RIMS2, KCNIP4, GRIN2A, CACNA1A, LINGO2, LRFN5, SYN3, KCNMA1 
##     KSR2, CNTNAP5, KCNQ5, RBFOX3, MIAT, SYN2, TENM2, PCSK2, ASIC2, ERC2 
## Negative:  QKI, ZBTB20, SLC1A3, FBXL7, COL4A5, NFIA, ADGRV1, ST18, MEIS2, SYNE2 
##     AL589740.1, NEAT1, DOCK5, CHD7, DAAM2, AC026316.5, ERBB4, DOCK1, CLMN, ENPP2 
##     TTYH2, ZFHX4, RFTN2, GLI3, SPP1, TF, FGFR2, LINC01965, RNF220, FA2H 
## PC_ 2 
## Positive:  ROBO2, MAP1B, RBFOX1, SYT1, STMN2, SATB2, RALYL, KCNH7, TMSB10, PTPRD 
##     NELL2, DCLK1, EPHA5, UNC5D, KCNQ5, GRIN2B, CCBE1, FGF13, EPHA3, LINC01122 
##     ARPP21, SLC44A5, GRIA1, NKAIN2, KHDRBS2, PLXNA4, GRIP1, GAP43, KCNB2, SOX4 
## Negative:  CDH20, NEAT1, DOCK1, KANK1, FHIT, PDE4B, SLC1A3, DOCK5, SASH1, GRAMD2B 
##     GLUL, SPATA6, KAT2B, ATP1A2, ATP13A4, PREX2, SLC9A9, FBXL7, ATP10B, RFTN2 
##     MSI2, DOCK10, QKI, HIF3A, LMCD1-AS1, ZHX2, ZBTB20, FOXO1, HTRA1, GPC5 
## PC_ 3 
## Positive:  MBP, ST18, AC026316.5, RNF220, TF, CLMN, ENPP2, CTNNA3, SYNJ2, HHIP 
##     CNP, CERCAM, SLC24A2, CDK18, SLC5A11, FA2H, DOCK5, DOCK10, UGT8, BCAS1 
##     EDIL3, PALM2, PLD1, AK5, SPOCK3, RAPGEF5, PDE1C, GPR37, CRYAB, PPM1H 
## Negative:  SLC1A2, PITPNC1, NKAIN3, RFX4, PTPRZ1, ADGRV1, ATP1A2, PARD3, PRDM16, GPC5 
##     ALDH1L1, HIF3A, RNF219-AS1, LINC00511, RGS20, BMPR1B, SLC4A4, CACHD1, MMD2, NHSL1 
##     SLC7A11, CTNNA2, SHROOM3, EYA2, F3, SPON1, RANBP3L, ARHGEF26, SOX6, PALLD 
## PC_ 4 
## Positive:  AL117329.1, SPARCL1, CLU, ARHGAP26, CAMK2A, KIAA1211L, NRGN, CREG2, PHYHIP, NIPAL2 
##     CABP1, AC067956.1, CADPS2, AC011287.1, SLC22A10, CBLN2, CCK, LRRK1, ARHGAP24, LINC01250 
##     VSNL1, STAMBPL1, RFTN1, DOCK8, HTR2A, APBB1IP, FSTL4, CHN1, KCNH1, ADAM28 
## Negative:  PLPPR1, ANO4, KIAA1211, MYO16, FGF13, XKR4, PTPRD, SEMA6D, SCN9A, LUZP2 
##     ROBO1, SLC44A5, SLC24A3, TENM1, DAB1, CCBE1, KLHL1, HIP1, FRMD3, KCNH8 
##     ROBO2, KCNQ1OT1, GRIP1, ST8SIA2, C8orf34, RUNX1T1, FRMD4B, TMEM108, PROM1, AFF2 
## PC_ 5 
## Positive:  DOCK8, APBB1IP, ADAM28, SLCO2B1, TBXAS1, INPP5D, RHBDF2, C3, FYB1, CSF2RA 
##     LRMDA, DOCK2, PALD1, SP100, RCSD1, FLI1, AC074327.1, ARHGAP15, AOAH, ST6GAL1 
##     ATP8B4, MYO1F, ARHGAP25, RUNX1, LPCAT2, RBM47, PIK3AP1, A2M, DENND3, RASGEF1C 
## Negative:  CLU, SPARCL1, NPAS3, AL117329.1, NRXN3, DGKB, TMEM132D, ERBB4, GPC5, CREG2 
##     CAMK2A, KCTD8, KCND3, CABP1, PHYHIP, KCNH1, PDE7B, CCK, NCAM2, RHBDL3 
##     RORA, PAM, COBL, AC067956.1, ZMAT4, ADGRV1, SLC22A10, CBLN2, AQP4-AS1, RFX4

##              used   (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells   10512971  561.5   25286841  1350.5   25286841  1350.5
## Vcells 1259276257 9607.6 2390062654 18234.8 2390055696 18234.7
## Computing nearest neighbor graph
## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 23124
## Number of edges: 788500
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9855
## Number of communities: 10
## Elapsed time: 1 seconds
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 22:10:58 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:10:58 Read 23124 rows and found 15 numeric columns
## 22:10:58 Using Annoy for neighbor search, n_neighbors = 30
## 22:10:58 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:11:00 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e965cc935f
## 22:11:00 Searching Annoy index using 1 thread, search_k = 3000
## 22:11:06 Annoy recall = 100%
## 22:11:06 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:11:07 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:11:08 Commencing optimization for 200 epochs, with 982644 positive edges
## 22:11:15 Optimization finished

##  [1] "excitatory_neurons2" "inhibitory_neurons"  "early_neurons"      
##  [4] "excitatory_neurons1" "opc"                 "oligodendrocytes"   
##  [7] "bipolar_neurons"     "mature_neurons"      "microglia"          
## [10] "astrocytes"

## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCAGTGCTTATG-1_1      17wks       4588         2013  0.1743679
## AAACGAAAGCCTCTTC-1_1      17wks        513          420  1.9493177
## AAACGAACAACAAAGT-1_1      17wks        457          375  0.4376368
## AAACGAACAACACGTT-1_1      17wks        452          381  0.4424779
## AAACGAATCCAATCTT-1_1      17wks        484          392  2.4793388
## AAACGCTAGAGGATGA-1_1      17wks        479          378  0.4175365
##                      RNA_snn_res.0.05 seurat_clusters         cell_types
## AAACCCAGTGCTTATG-1_1                1               1 inhibitory_neurons
## AAACGAAAGCCTCTTC-1_1                1               1 inhibitory_neurons
## AAACGAACAACAAAGT-1_1                1               1 inhibitory_neurons
## AAACGAACAACACGTT-1_1                1               1 inhibitory_neurons
## AAACGAATCCAATCTT-1_1                1               1 inhibitory_neurons
## AAACGCTAGAGGATGA-1_1                1               1 inhibitory_neurons
## 
## 17wks 20wks 22wks 26wks 38wks 28yrs 45yrs 53yrs 
##  2996  2912  2994  2954  2945  2803  2701  2819
## Warning: Monocle 3 trajectories require cluster partitions, which Seurat does
## not calculate. Please run 'cluster_cells' on your cell_data_set object
## DataFrame with 6 rows and 9 columns
##                       orig.ident nCount_RNA nFeature_RNA percent.mt
##                      <character>  <numeric>    <integer>  <numeric>
## AAACCCAGTGCTTATG-1_1       17wks       4588         2013   0.174368
## AAACGAAAGCCTCTTC-1_1       17wks        513          420   1.949318
## AAACGAACAACAAAGT-1_1       17wks        457          375   0.437637
## AAACGAACAACACGTT-1_1       17wks        452          381   0.442478
## AAACGAATCCAATCTT-1_1       17wks        484          392   2.479339
## AAACGCTAGAGGATGA-1_1       17wks        479          378   0.417537
##                      RNA_snn_res.0.05 seurat_clusters         cell_types
##                              <factor>        <factor>           <factor>
## AAACCCAGTGCTTATG-1_1                1               1 inhibitory_neurons
## AAACGAAAGCCTCTTC-1_1                1               1 inhibitory_neurons
## AAACGAACAACAAAGT-1_1                1               1 inhibitory_neurons
## AAACGAACAACACGTT-1_1                1               1 inhibitory_neurons
## AAACGAATCCAATCTT-1_1                1               1 inhibitory_neurons
## AAACGCTAGAGGATGA-1_1                1               1 inhibitory_neurons
##                         ident Size_Factor
##                      <factor>   <numeric>
## AAACCCAGTGCTTATG-1_1    17wks        4588
## AAACGAAAGCCTCTTC-1_1    17wks         513
## AAACGAACAACAAAGT-1_1    17wks         457
## AAACGAACAACACGTT-1_1    17wks         452
## AAACGAATCCAATCTT-1_1    17wks         484
## AAACGCTAGAGGATGA-1_1    17wks         479
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
## Cells aren't colored in a way that allows them to be grouped.

## No preprocess_method specified, using preprocess_method = 'PCA'
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCAGTGCTTATG-1_1      17wks       4588         2013  0.1743679
## AAACGAAAGCCTCTTC-1_1      17wks        513          420  1.9493177
## AAACGAACAACAAAGT-1_1      17wks        457          375  0.4376368
## AAACGAACAACACGTT-1_1      17wks        452          381  0.4424779
## AAACGAATCCAATCTT-1_1      17wks        484          392  2.4793388
## AAACGCTAGAGGATGA-1_1      17wks        479          378  0.4175365
##                      RNA_snn_res.0.05 seurat_clusters         cell_types
## AAACCCAGTGCTTATG-1_1                1               1 inhibitory_neurons
## AAACGAAAGCCTCTTC-1_1                1               1 inhibitory_neurons
## AAACGAACAACAAAGT-1_1                1               1 inhibitory_neurons
## AAACGAACAACACGTT-1_1                1               1 inhibitory_neurons
## AAACGAATCCAATCTT-1_1                1               1 inhibitory_neurons
## AAACGCTAGAGGATGA-1_1                1               1 inhibitory_neurons
##                      monocle_pseudotime
## AAACCCAGTGCTTATG-1_1       5.600102e-02
## AAACGAAAGCCTCTTC-1_1       4.491611e-01
## AAACGAACAACAAAGT-1_1       1.174419e-01
## AAACGAACAACACGTT-1_1       1.326792e-06
## AAACGAATCCAATCTT-1_1       5.659887e-01
## AAACGCTAGAGGATGA-1_1       4.665123e-01
## 22:13:23 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:13:23 Read 23124 rows and found 15 numeric columns
## 22:13:23 Using Annoy for neighbor search, n_neighbors = 30
## 22:13:23 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:13:24 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e93c9cd067
## 22:13:24 Searching Annoy index using 1 thread, search_k = 3000
## 22:13:30 Annoy recall = 100%
## 22:13:31 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:13:32 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:13:33 Commencing optimization for 200 epochs, with 982644 positive edges
## 22:13:41 Optimization finished
## Warning: Number of dimensions changing from 2 to 3
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCAGTGCTTATG-1_1      17wks       4588         2013  0.1743679
## AAACGAAAGCCTCTTC-1_1      17wks        513          420  1.9493177
## AAACGAACAACAAAGT-1_1      17wks        457          375  0.4376368
## AAACGAACAACACGTT-1_1      17wks        452          381  0.4424779
## AAACGAATCCAATCTT-1_1      17wks        484          392  2.4793388
## AAACGCTAGAGGATGA-1_1      17wks        479          378  0.4175365
##                      RNA_snn_res.0.05 seurat_clusters         cell_types
## AAACCCAGTGCTTATG-1_1                1               1 inhibitory_neurons
## AAACGAAAGCCTCTTC-1_1                1               1 inhibitory_neurons
## AAACGAACAACAAAGT-1_1                1               1 inhibitory_neurons
## AAACGAACAACACGTT-1_1                1               1 inhibitory_neurons
## AAACGAATCCAATCTT-1_1                1               1 inhibitory_neurons
## AAACGCTAGAGGATGA-1_1                1               1 inhibitory_neurons
##                      monocle_pseudotime
## AAACCCAGTGCTTATG-1_1       5.600102e-02
## AAACGAAAGCCTCTTC-1_1       4.491611e-01
## AAACGAACAACAAAGT-1_1       1.174419e-01
## AAACGAACAACACGTT-1_1       1.326792e-06
## AAACGAATCCAATCTT-1_1       5.659887e-01
## AAACGCTAGAGGATGA-1_1       4.665123e-01

Neural network predictive classifications by paired neuro-developmental time-points in order.

## 
## Attaching package: 'keras3'
## The following object is masked from 'package:BiocGenerics':
## 
##     normalize
## 
## Attaching package: 'neuralnet'
## The following object is masked from 'package:dplyr':
## 
##     compute
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## The following objects are masked from 'package:IRanges':
## 
##     cov, var
## The following objects are masked from 'package:S4Vectors':
## 
##     cov, var
## The following object is masked from 'package:BiocGenerics':
## 
##     var
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
## 
## Attaching package: 'ROCR'
## The following object is masked from 'package:neuralnet':
## 
##     prediction
## 
## Attaching package: 'caTools'
## The following object is masked from 'package:IRanges':
## 
##     runmean
## The following object is masked from 'package:S4Vectors':
## 
##     runmean
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:clusterProfiler':
## 
##     dotplot
## 
## Attaching package: 'caret'
## The following objects are masked from 'package:InformationValue':
## 
##     confusionMatrix, precision, sensitivity, specificity
## The following object is masked from 'package:monocle3':
## 
##     compare_models
## The following object is masked from 'package:purrr':
## 
##     lift
## 
## 17wks 20wks 22wks 26wks 28yrs 38wks 45yrs 53yrs 
##  2996  2912  2994  2954  2803  2945  2701  2819
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589

## Prediction/classification_results:
##    0    1 
## 1531 1392
## Actual_classifications:
## 
##    0    1 
## 1451 1472
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1328  203
##          1  123 1269
##                                           
##                Accuracy : 0.8885          
##                  95% CI : (0.8765, 0.8997)
##     No Information Rate : 0.5036          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.777           
##                                           
##  Mcnemar's Test P-Value : 1.212e-05       
##                                           
##             Sensitivity : 0.8621          
##             Specificity : 0.9152          
##          Pos Pred Value : 0.9116          
##          Neg Pred Value : 0.8674          
##              Prevalence : 0.5036          
##          Detection Rate : 0.4341          
##    Detection Prevalence : 0.4762          
##       Balanced Accuracy : 0.8887          
##                                           
##        'Positive' Class : 1               
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.9099
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             2985  -none-     numeric 
## covariate           62685  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         708  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  AL589740.1, ADGRV1, LINC01965, MEIS2, SYNE2, GLI3, NKAIN3, NFIA, CENPF, DACH1 
##     SFRP1, FABP7, DIAPH3, VIM, HMGCS1, AC131571.1, UNC5D, SOX6, SMC4, LTBP1 
##     SOX4, ZFHX4, HMGB2, PDGFD, EPHA3, ZBTB20, IQGAP2, AC016205.1, GPC6, ASPM 
## Negative:  CSMD1, OPCML, NTRK2, KCNMA1, FGF14, FGF12, LRP1B, XKR4, DPP10, FRMPD4 
##     CACNA1A, CNTN1, SYN3, GRIN2B, KAZN, MAGI2, RYR2, PDZD2, RIMS2, GAS7 
##     CNTNAP5, LRRC4C, CELF4, GRM5, KHDRBS3, CACNA2D3, TENM2, SPOCK1, LINGO2, GABRG3 
## PC_ 2 
## Positive:  GRIK3, HS3ST4, TP53I11, TMSB10, TRPM3, SORCS1, SCUBE1, CRYM, GAS7, SYT6 
##     PCP4, KIAA1217, STMN2, COL12A1, CALN1, NGEF, ISLR2, OSBPL10, IGSF21, GSG1L 
##     PAPPA2, TLE4, SLIT1, LMO3, GNAL, PDZD2, TRMT9B, FAM160A1, COL15A1, CELF4 
## Negative:  RORA, NPAS3, ZBTB20, MSI2, LSAMP, QKI, PRDM16, SLC1A3, FBXL7, EEPD1 
##     PTPRK, LRIG1, ZEB1, DTNA, SEZ6L, TNC, MAST4, LTBP1, NCAM2, GLI2 
##     CREB5, GLI3, GRIA4, TMTC2, ARAP2, AC092691.1, CDH20, FHIT, DOCK1, PTPRM 
## PC_ 3 
## Positive:  NFIA, GLI3, SEL1L3, IGF2BP2, TLE4, PRDM16, CELSR1, PAX6, TP53I11, GRIK3 
##     PTN, SCUBE1, BOC, LINC01965, SYNE2, PLCE1, VCAN, ADGRV1, SEMA5B, NNAT 
##     GLI2, SHROOM3, LTBP1, CA12, IQGAP2, NKAIN3, LAMA1, HS3ST4, TMEM132B, ISLR2 
## Negative:  NRXN3, DLGAP2, THRB, GRM7, KCNIP4, UNC5C, ERBB4, IQCJ-SCHIP1, GRIA4, FMN1 
##     ZNF804B, NRGN, EDIL3, RASGRF2, CNTNAP2, ADARB2, MYRIP, CADPS2, PDZRN3, FAM19A1 
##     NWD2, ZBTB16, NECAB1, MBP, ANO3, PPFIBP1, NKAIN2, NEFL, SPARCL1, KCNC2 
## PC_ 4 
## Positive:  LINC00854, BCAN, MMD2, KAZN, TCF7L1, COL20A1, HES4, TNC, LAMA4, EGFR 
##     HBA2, MECOM, EPN2, WSCD1, PLEKHH2, ARHGAP31, RHOJ, SEZ6L, XYLT1, MFGE8 
##     RPS23, HES5, FGFR1, RGMA, HES1, GRIK3, HIP1, MAML2, MAMDC2, ATP13A4 
## Negative:  AL589740.1, UNC5D, ROBO2, EPHA3, NKAIN3, EPHA5, KCNH7, MEIS2, NKAIN2, MAP1B 
##     PTPRD, ADGRV1, LINC01965, ROBO1, ELAVL2, SYT1, NFIA, SORBS2, ERBB4, MARCH1 
##     GPC6, HMGCS1, SEMA3C, CNR1, PDE4D, CNTNAP2, GRAMD1B, SNTG1, ZBTB20, SYNE2 
## PC_ 5 
## Positive:  TNC, EEPD1, ID4, SFRP1, LRRC3B, SLCO1C1, MOXD1, AC131571.1, IQGAP2, VIM 
##     FABP7, FAM107A, HMGCS1, PTN, CCDC175, LAMA1, VEPH1, HES5, MAST4, FSTL1 
##     PARD3B, TMEM132B, PTPRM, RHOJ, GLI3, DOK5, SLC2A3, MMD2, SHROOM3, MFGE8 
## Negative:  NUSAP1, C21orf58, KNL1, KIF11, CDC25C, ASPM, TPX2, KIF15, KIF14, SPC25 
##     APOLD1, NUF2, POLQ, DIAPH3, CENPE, TACC3, CENPF, BRIP1, HMGB2, SMC4 
##     PARPBP, SGO2, WDR62, MIS18BP1, ECT2, FANCI, STIL, LINC01572, RTKN2, CEP152
## 22:15:42 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:15:42 Read 5908 rows and found 15 numeric columns
## 22:15:42 Using Annoy for neighbor search, n_neighbors = 30
## 22:15:42 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:15:42 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e96d3d7cb7
## 22:15:42 Searching Annoy index using 1 thread, search_k = 3000
## 22:15:44 Annoy recall = 100%
## 22:15:45 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:15:46 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:15:46 Commencing optimization for 500 epochs, with 244952 positive edges
## 22:15:51 Optimization finished
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCAGTGCTTATG-1_1      17wks       4588         2013  0.1743679
## AAACGAAAGCCTCTTC-1_1      17wks        513          420  1.9493177
## AAACGAACAACAAAGT-1_1      17wks        457          375  0.4376368
## AAACGAACAACACGTT-1_1      17wks        452          381  0.4424779
## AAACGAATCCAATCTT-1_1      17wks        484          392  2.4793388
## AAACGCTAGAGGATGA-1_1      17wks        479          378  0.4175365
##                      RNA_snn_res.0.05 seurat_clusters         cell_types
## AAACCCAGTGCTTATG-1_1                1               1 inhibitory_neurons
## AAACGAAAGCCTCTTC-1_1                1               1 inhibitory_neurons
## AAACGAACAACAAAGT-1_1                1               1 inhibitory_neurons
## AAACGAACAACACGTT-1_1                1               1 inhibitory_neurons
## AAACGAATCCAATCTT-1_1                1               1 inhibitory_neurons
## AAACGCTAGAGGATGA-1_1                1               1 inhibitory_neurons
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
## 
## 20wks 22wks 
##  2912  2994
## 
##    0    1 
## 2912 2994
## 
##    0    1 
## 2912 2994
## 
##    0    1 
## 1506 1478
## 
##    0    1 
## 1406 1516

## Prediction/classification_results:
##    0    1 
## 1466 1456
## Actual_classifications:
## 
##    0    1 
## 1406 1516
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1205  261
##          1  201 1255
##                                           
##                Accuracy : 0.8419          
##                  95% CI : (0.8281, 0.8549)
##     No Information Rate : 0.5188          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6838          
##                                           
##  Mcnemar's Test P-Value : 0.006052        
##                                           
##             Sensitivity : 0.8278          
##             Specificity : 0.8570          
##          Pos Pred Value : 0.8620          
##          Neg Pred Value : 0.8220          
##              Prevalence : 0.5188          
##          Detection Rate : 0.4295          
##    Detection Prevalence : 0.4983          
##       Balanced Accuracy : 0.8424          
##                                           
##        'Positive' Class : 1               
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.9047
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             2984  -none-     numeric 
## covariate           41776  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         568  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  MAP1B, HBA2, ERBB4, PCDH11Y, NEFM, FABP7, ROBO2, HBA1, DLX6-AS1, SATB2 
##     PTPRD, MECOM, NUSAP1, ZNF804B, TMSB10, MAMDC2, FAM19A1, PRSS12, TNC, KNL1 
##     STMN2, RPS23, HES5, COL20A1, NPAS1, SEMA5B, ASPM, NKAIN2, AC016708.1, PTPRZ1 
## Negative:  KCNMA1, NTRK2, CACNA1A, CELF4, SYN3, GRID1, DANT2, CACNA2D3, ASTN2, SLC24A2 
##     AGBL4, SAMD12, NRCAM, NTRK3, ASIC2, CACNA1D, SYN2, TMEM132B, SPOCK1, SGSM1 
##     SLCO3A1, MTUS2, GABRG3, FGF14, MCF2L2, CACNA1E, SNAP25, CNTNAP5, ADCY2, KAZN 
## PC_ 2 
## Positive:  SLC1A3, ZBTB20, MSI2, RORA, QKI, PRDM16, NPAS3, TNC, FBXL7, ADGRV1 
##     GLI3, EEPD1, ZEB1, TMTC2, EGFR, LTBP1, LRIG1, SEZ6L, AL589740.1, GLI2 
##     DOCK1, CREB5, TCF7L1, LINC01965, TMEM132D, PARD3B, COL11A1, BCAN, PAX6, LAMA1 
## Negative:  HS3ST4, GRIK3, TRPM3, SORCS1, TP53I11, SCUBE1, RBFOX1, CRYM, CALN1, ROBO2 
##     KIAA1217, IGSF21, ARPP21, OSBPL10, SYT6, PTPRD, XKR4, PCP4, COL12A1, PAPPA2 
##     STMN2, DPP10, TLE4, C8orf34, ISLR2, LMO3, NGEF, GNAL, SATB2, TMSB10 
## PC_ 3 
## Positive:  GRIK3, RPS23, TMSB10, SEL1L3, LINC00854, TP53I11, MECOM, HS3ST4, PTPRZ1, SCUBE1 
##     TLE4, SEMA5B, MAMDC2, SORCS1, TNC, PRDM16, HES4, KAZN, CRYM, PCP4 
##     NNAT, SYT6, PITPNC1, PLEKHH2, GLI2, C21orf58, MMD2, XYLT1, PLCE1, GSG1L 
## Negative:  NKAIN2, NRXN3, PTPRD, GRM7, ERBB4, PTPRK, CNTNAP2, FAM19A1, ZNF804B, KCNIP4 
##     IQCJ-SCHIP1, MACROD2, ADGRL3, KCNQ5, RUNX1T1, CTNNA2, SYT1, RALYL, UNC5D, MAGI2 
##     SLC44A5, LSAMP, PDE4D, UNC5C, MAP1B, GRIK2, KCNH7, CSMD3, SNTG1, MARCH1 
## PC_ 4 
## Positive:  HBA2, HBA1, TMSB10, FTL, FTH1, DSCAML1, ADARB2, MAMDC2, CELF4, FN1 
##     MECOM, PCSK1N, FLI1, CACNA1A, IGFBP7, CACNA2D3, NPAS1, NGEF, XAF1, RIPOR2 
##     ASIC2, SLIT3, SPARC, SAT1, SLC7A5, MIR4435-2HG, A2M, ZBTB16, AC092683.1, EBF1 
## Negative:  ROBO2, PTPRD, PCDH11Y, SATB2, KCNH7, SLC44A5, NKAIN2, MAP1B, RALYL, PTPRK 
##     LRRC4C, DOK5, CELF2, NELL2, PTPRZ1, MGAT4C, ZNF804B, FAM19A1, ARPP21, KCNQ5 
##     SEMA6D, LSAMP, AL589740.1, MACROD2, KLHL1, C21orf58, FAM155A, PRDM16, NRG3, UNC5D 
## PC_ 5 
## Positive:  TNC, EEPD1, MMD2, PTPRZ1, GFAP, BCAN, LRP1B, RHOJ, MFGE8, SLC1A3 
##     ATP1A2, TCF7L1, SLCO1C1, RGMA, RGS20, HES5, LRIG1, ACSBG1, DTNA, RGS6 
##     PON2, ATP13A4, LRRC4C, FAM107A, PLEKHH2, COL27A1, ITPR2, LRRTM4, RFX4, HOPX 
## Negative:  NUSAP1, C21orf58, KNL1, ASPM, APOLD1, NPAS1, SOX4, KIF11, NUF2, KIF15 
##     KIF14, TPX2, ST8SIA2, HMGB2, POLQ, HBA2, CENPE, CENPF, TMSB10, SMC4 
##     TACC3, LHX6, LINC00854, GAD2, BRIP1, DIAPH3, DLX6-AS1, NNAT, AC016708.1, ECT2 
## 22:19:21 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:19:21 Read 5906 rows and found 15 numeric columns
## 22:19:21 Using Annoy for neighbor search, n_neighbors = 30
## 22:19:21 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:19:22 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e9213cdd31
## 22:19:22 Searching Annoy index using 1 thread, search_k = 3000
## 22:19:23 Annoy recall = 100%
## 22:19:24 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:19:25 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:19:25 Commencing optimization for 500 epochs, with 250192 positive edges
## 22:19:31 Optimization finished
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
## 
## 22wks 26wks 
##  2994  2954
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCAGTTCACGAT-1_3      22wks        333          290  0.0000000
## AAACGAAAGGGACACT-1_3      22wks        371          298  0.0000000
## AAACGAACACAGTCCG-1_3      22wks        358          301  1.3966480
## AAACGAACATTACGGT-1_3      22wks        340          287  0.0000000
## AAACGAAGTAGACAGC-1_3      22wks        325          294  0.6153846
## AAACGCTAGCCTAGGA-1_3      22wks        360          298  0.0000000
##                      RNA_snn_res.0.05 seurat_clusters          cell_types
## AAACCCAGTTCACGAT-1_3                0               0 excitatory_neurons2
## AAACGAAAGGGACACT-1_3                0               0 excitatory_neurons2
## AAACGAACACAGTCCG-1_3                0               0 excitatory_neurons2
## AAACGAACATTACGGT-1_3                0               0 excitatory_neurons2
## AAACGAAGTAGACAGC-1_3                0               0 excitatory_neurons2
## AAACGCTAGCCTAGGA-1_3                0               0 excitatory_neurons2

## Prediction/classification_results:
##    0    1 
## 1515 1428
## Actual_classifications:
## 
##    0    1 
## 1450 1493
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1353  162
##          1   97 1331
##                                          
##                Accuracy : 0.912          
##                  95% CI : (0.9012, 0.922)
##     No Information Rate : 0.5073         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.8241         
##                                          
##  Mcnemar's Test P-Value : 6.986e-05      
##                                          
##             Sensitivity : 0.8915         
##             Specificity : 0.9331         
##          Pos Pred Value : 0.9321         
##          Neg Pred Value : 0.8931         
##              Prevalence : 0.5073         
##          Detection Rate : 0.4523         
##    Detection Prevalence : 0.4852         
##       Balanced Accuracy : 0.9123         
##                                          
##        'Positive' Class : 1              
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.9456
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             3005  -none-     numeric 
## covariate           60100  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         688  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  ERBB4, ZEB1, MAP1B, NPAS3, SOX6, TMSB10, SLC1A3, SPARCL1, FTH1, CLU 
##     SYNE2, QKI, CHD7, ZBTB20, GAPDH, GLI3, AL589740.1, NEFM, NEAT1, COL4A5 
##     RPS23, FTL, NEFL, SPP1, ZFP36L1, DOCK5, ITPR2, ZFHX4, LINC00609, BCAS1 
## Negative:  CHRM2, PCSK2, HTR7, TENM1, AC060809.1, CCBE1, SCN9A, CACNA1E, MYO16, CALN1 
##     RYR3, DYNC1I1, GRM1, FGF13, PTCHD1-AS, PROM1, MIR137HG, SYN3, PRR16, XKR4 
##     SEMA6D, PLPPR1, ANKRD30BL, KCNJ6, C8orf34, FRMD3, GRIA1, SPHKAP, PPFIBP1, HS3ST2 
## PC_ 2 
## Positive:  KCNIP1, NPAS3, MSI2, KAT2B, FBXL7, MAGI1, GPC5, QKI, ARHGAP42, LINC00854 
##     PARD3, SLC1A3, LRIG1, TCF7L2, ZEB1, SPATA6, PRKD1, SLC1A2, CDH20, DOCK1 
##     ATP13A4, CHD7, TNS1, MMD2, LINC00511, CECR2, RFTN2, DPF3, EPN2, SEMA5A 
## Negative:  SATB2, NKAIN2, PTPRD, RALYL, ROBO2, ARPP21, MAP1B, ZNF804B, FAM19A1, CCBE1 
##     KLHL1, KCNQ5, RBFOX1, MIR137HG, SLC44A5, NELL2, MGAT4C, KHDRBS2, IQCJ-SCHIP1, PTPRK 
##     C8orf34, PCDH11Y, SCN9A, KCNH7, SAMD3, ADAMTSL3, MACROD2, CELF2, HTR7, GRM7 
## PC_ 3 
## Positive:  FOXP1, KCNMA1, POU6F2, MAP3K5, PTPRK, RAPGEF5, ARAP2, RYR2, LDB2, ZFPM2 
##     ANO3, PRKCB, UNC5C, PTCHD1-AS, NECAB1, CSGALNACT1, TMEM132D, IQCJ-SCHIP1, TMEM132B, CDH20 
##     NPNT, SPARCL1, CALN1, PLXDC2, KCNIP4, RALYL, PEX5L, EFNA5, AC006148.1, NPAS2 
## Negative:  DLX6-AS1, ERBB4, LINC00854, ARHGAP28, GAD1, ADARB2, DSCAML1, NPAS1, IGF1, MAF 
##     PDZRN3, NXPH1, RIPOR2, NXPH2, PLS3, GAD2, KIAA1211, DLX1, RUNX1T1, ELFN1 
##     NETO2, HUNK, GAS2L3, KITLG, GRIP2, NTN4, THRB, GRIA1, NYAP2, MCUB 
## PC_ 4 
## Positive:  FAM19A1, PRSS12, SPON1, PID1, AL589740.1, DCC, LINC00854, SLC44A5, CCBE1, MDGA1 
##     SEZ6L, CDH4, UNC5D, CUX2, NHSL1, PTPRK, CECR2, AC007402.1, NPNT, KCNH7 
##     ZBTB20, CDH13, EPHA3, ZNF804A, TOX3, AC092691.1, SATB2, LSAMP, UACA, LDLRAD4 
## Negative:  KIAA1217, OLFM3, TRPM3, HS3ST4, GRIK3, CDH18, SLC35F3, GALNT17, GABRG3, CACNA2D3 
##     CELF4, TSHZ3, ASIC2, SORCS1, DLC1, SPOCK3, FAM160A1, SNRPN, AC025809.1, ZNF385D 
##     SAMD12, SYNPR, MLIP, ABLIM3, CDH9, PEX5L, VSNL1, LINC02223, GRIN3A, HSPA12A 
## PC_ 5 
## Positive:  FAM19A2, ANO3, GRIA4, KCNC2, GALNTL6, RASGRF2, FMN1, KCNIP4, CUX2, MYRIP 
##     THSD4, PDZRN3, IQCJ-SCHIP1, KCNH5, NECTIN3, CYP1B1-AS1, PTCHD1-AS, EPHA6, SYNDIG1, RARB 
##     RCAN2, NWD2, ITPR1, PPFIBP1, AJ009632.2, TMTC1, PLCH1, RSPO2, PTCHD4, KCTD16 
## Negative:  FAM160A1, EPB41L4A, HS3ST4, TLE4, COL15A1, BRINP3, LINC02223, HCRTR2, DLC1, TRPM3 
##     KLHL1, PRKG1, AC004158.1, COL12A1, LMO3, GRIK3, LINC01776, AL133346.1, DSCAM, ROBO2 
##     ZFHX3, TRMT9B, SEMA3C, CDH11, AP001636.3, FOXP2, DCC, NFIA, AC007656.1, FSTL5 
## 22:21:01 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:21:01 Read 5948 rows and found 15 numeric columns
## 22:21:01 Using Annoy for neighbor search, n_neighbors = 30
## 22:21:01 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:21:01 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e95065c809
## 22:21:01 Searching Annoy index using 1 thread, search_k = 3000
## 22:21:03 Annoy recall = 100%
## 22:21:04 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:21:05 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:21:05 Commencing optimization for 500 epochs, with 250324 positive edges
## 22:21:11 Optimization finished
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
## 
## 26wks 38wks 
##  2954  2945

## Prediction/classification_results:
##    0    1 
## 1497 1419
## Actual_classifications:
## 
##    0    1 
## 1430 1486
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1181  316
##          1  249 1170
##                                           
##                Accuracy : 0.8062          
##                  95% CI : (0.7914, 0.8204)
##     No Information Rate : 0.5096          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6127          
##                                           
##  Mcnemar's Test P-Value : 0.005492        
##                                           
##             Sensitivity : 0.7873          
##             Specificity : 0.8259          
##          Pos Pred Value : 0.8245          
##          Neg Pred Value : 0.7889          
##              Prevalence : 0.5096          
##          Detection Rate : 0.4012          
##    Detection Prevalence : 0.4866          
##       Balanced Accuracy : 0.8066          
##                                           
##        'Positive' Class : 1               
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.8843
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             2983  -none-     numeric 
## covariate           71592  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         768  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  RFX4, SLC1A3, ZBTB20, LRIG1, QKI, ZEB1, MMD2, SPARCL1, CHD7, ERBB4 
##     DOCK1, FBXL7, EEPD1, MSI2, TNC, NEAT1, NPAS3, CECR2, PARD3B, ITPR2 
##     FOXO1, CLU, RFTN2, CD9, HOPX, SLC4A4, PRDM16, SYNE2, MFGE8, TCF7L1 
## Negative:  CALN1, KLHL1, SCN9A, PCSK2, CCBE1, MYO16, SYN3, FGF13, PTCHD1-AS, XKR4 
##     DYNC1I1, NWD2, TENM1, GRM7, GRM1, FAM19A1, FRMD3, PPP2R2C, IQCJ-SCHIP1, FGF12 
##     PRR16, CACNA1E, AC060809.1, MIR137HG, CHRM2, PLPPR1, LINGO2, RYR3, MACROD2, C8orf34 
## PC_ 2 
## Positive:  MMD2, RFX4, TNC, LRIG1, AC007402.1, SLC1A2, TFRC, CACHD1, SPON1, LINC00511 
##     RGMA, FOXO1, MSI2, EEPD1, ATP13A4, ARHGEF26, TIMP3, SLC4A4, SEMA5A, RNF219-AS1 
##     TCF7L1, SHROOM3, ITPR2, PARD3B, AC002429.2, MFGE8, PITPNC1, EYA2, TCF7L2, DTNA 
## Negative:  RBFOX1, TMSB10, SYT1, NKAIN2, MAP1B, ZNF536, SLC24A2, STMN2, GALNT17, FTH1 
##     CNTNAP2, CUX2, PCLO, VSNL1, MICAL2, DLGAP2, CELF4, KIAA1217, CALM3, CDH18 
##     NRGN, TENM2, PEX5L, EEF1A2, FTL, GRIN2B, SNRPN, ADARB2, CABP1, SPOCK3 
## PC_ 3 
## Positive:  FAM19A1, IQCJ-SCHIP1, ARPP21, PTPRK, ANO3, DOK5, RALYL, CCBE1, FOXP1, KLHL1 
##     NWD2, DPYD, LDB2, CALN1, PTCHD1-AS, ACTN2, HS3ST2, RORB, NPY1R, UNC5C 
##     ITPR1, DYNC1I1, FMN1, RTN4RL1, RASGEF1C, NPNT, RYR2, NECAB1, NRGN, KCNH5 
## Negative:  NXPH1, GAD1, ERBB4, IGF1, DLX6-AS1, MAF, ZNF536, KCNIP1, DSCAML1, GRIP2 
##     GAD2, LHX6, NXPH2, ADARB2, ELFN1, DLX1, SYNPR, KIAA1217, MAGI1, LINC01322 
##     NPAS1, NETO2, LINC00854, PLS3, PTCHD4, AC233296.1, ARHGAP28, CACNG2, SNRPN, PAM 
## PC_ 4 
## Positive:  HS3ST4, TRPM3, DLC1, GRIK3, KIAA1217, FAM160A1, SORCS1, TLE4, LINC02223, CDH18 
##     POU6F2, COL12A1, LRP1B, PEX5L, GABRG3, SLC35F3, LRRTM3, GSG1L, AL133346.1, SULF1 
##     FOXP2, ASTN2, TSHZ3, LINC01435, OLFM3, NEGR1, TMEM178A, OCA2, UNC13C, PTPRU 
## Negative:  CUX2, FAM19A1, MDGA1, PRSS12, CCBE1, SPON1, EPHA6, FGF13, EPHA3, UNC5D 
##     FAM19A2, CDH13, LINC00854, CDH4, PID1, PLXNA4, THBS1, NHSL1, ST8SIA2, IQCJ-SCHIP1 
##     SDK1, KITLG, PPFIBP1, NDST3, KIF26B, ARHGAP18, TENM4, PDZRN3, GRIA1, NECTIN3 
## PC_ 5 
## Positive:  PTPRT, NXPH1, LHX6, SIAH3, PTCHD4, GRIN3A, PLCH1, MAF, GRIK1, SAMD5 
##     DLGAP2, AL033504.1, MARCH11, NXPH2, NTRK2, RASGRF2, TRHDE, MAFB, THSD4, TENM2 
##     ADCY8, KIAA1217, PTPRM, ST6GALNAC5, TRPC6, RELN, PAWR, MICAL2, NETO1, GRIP2 
## Negative:  DSCAM, ADARB2, PID1, LINC00854, SEMA3C, AC004158.1, PROX1, VCAN, MAML3, KITLG 
##     TRMT9B, SORCS3, KCNJ3, CHD7, ZNF804A, PALMD, NXN, GALNT13, ZBTB20, CECR2 
##     CDH4, NR2F2-AS1, SDK2, SYNE2, CHST11, DLX6-AS1, CNR1, ZFHX3, GAS2L3, ZEB1 
## 22:22:45 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:22:45 Read 5899 rows and found 15 numeric columns
## 22:22:45 Using Annoy for neighbor search, n_neighbors = 30
## 22:22:45 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:22:45 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e922dcbdb2
## 22:22:45 Searching Annoy index using 1 thread, search_k = 3000
## 22:22:47 Annoy recall = 100%
## 22:22:47 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:22:49 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:22:49 Commencing optimization for 500 epochs, with 233974 positive edges
## 22:22:54 Optimization finished
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
## 
## 28yrs 38wks 
##  2803  2945
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACGAAAGCTAAGTA-1_5      38wks       1041          778   8.549472
## AAACGCTTCAAATGAG-1_5      38wks       1724         1180   3.654292
## AAACGCTTCCGTGGGT-1_5      38wks      18645         5228   3.657817
## AAAGAACTCTCCATAT-1_5      38wks        483          404   4.347826
## AAAGGATGTCACCACG-1_5      38wks       6507         2748   2.843092
## AAAGGATGTGCCTTTC-1_5      38wks        395          326   7.341772
##                      RNA_snn_res.0.05 seurat_clusters          cell_types
## AAACGAAAGCTAAGTA-1_5                0               0 excitatory_neurons2
## AAACGCTTCAAATGAG-1_5                7               7      mature_neurons
## AAACGCTTCCGTGGGT-1_5                0               0 excitatory_neurons2
## AAAGAACTCTCCATAT-1_5                4               4                 opc
## AAAGGATGTCACCACG-1_5                0               0 excitatory_neurons2
## AAAGGATGTGCCTTTC-1_5                2               2       early_neurons

## Prediction/classification_results:
##    0    1 
## 1566 1269
## Actual_classifications:
## 
##    0    1 
## 1425 1410
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1305  261
##          1  120 1149
##                                          
##                Accuracy : 0.8656         
##                  95% CI : (0.8525, 0.878)
##     No Information Rate : 0.5026         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.7311         
##                                          
##  Mcnemar's Test P-Value : 7.368e-13      
##                                          
##             Sensitivity : 0.8149         
##             Specificity : 0.9158         
##          Pos Pred Value : 0.9054         
##          Neg Pred Value : 0.8333         
##              Prevalence : 0.4974         
##          Detection Rate : 0.4053         
##    Detection Prevalence : 0.4476         
##       Balanced Accuracy : 0.8653         
##                                          
##        'Positive' Class : 1              
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.9124
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             2913  -none-     numeric 
## covariate           64086  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         728  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  SPP1, HHIP, CD9, CNP, GLUL, CRYAB, LPAR1, SLC1A3, TF, GPR37 
##     QKI, NEAT1, UGT8, OLIG1, MBP, COL4A5, DAAM2, DOCK1, DOCK5, BCAS1 
##     ZBTB20, ENPP2, RGCC, HTRA1, ST18, MT2A, TTYH2, DOCK10, CLMN, FGFR2 
## Negative:  DLGAP2, MIAT, RBFOX1, SYN3, OPCML, FGF12, GRIN2A, PPP2R2C, ERC2, AGBL4 
##     FRMPD4, CACNA1D, CHRM3, CELF4, GRIN2B, FGF14, GRM5, CADPS, RIMS2, MYRIP 
##     XKR4, SYBU, KCNIP4, ASIC2, CACNA2D3, SHISA9, RBFOX3, RYR2, PTPRR, MTUS2 
## PC_ 2 
## Positive:  MAP1B, SYT1, NRGN, NEFL, ENC1, THY1, VSNL1, CCK, NEFM, PHYHIP 
##     VGF, TMSB10, CALM3, SNAP25, STMN2, RBFOX1, CHGA, TUBA1B, CREG2, CAMK2A 
##     CHGB, OLFM1, GABRA1, SLC17A7, PCSK1N, TUBB2A, DKK3, NPTX1, EEF1A2, YWHAH 
## Negative:  CD9, PDE4B, SPATA6, GLUL, GRAMD2B, DOCK1, QKI, HHIP, NEAT1, CDH20 
##     ARAP2, FBXL7, NPAS3, KANK1, HTRA1, CNP, FGFR2, SASH1, SLC1A3, ZBTB20 
##     AC002429.2, RFX4, PREX2, FOXO1, GPR37, FHIT, LRIG1, DOCK5, ATP13A4, LPAR1 
## PC_ 3 
## Positive:  ITPR2, RFX4, MERTK, MMD2, APBB1IP, APOE, GPC5, DOCK8, RNF219-AS1, SLCO2B1 
##     PALD1, ADAM28, SLC1A2, RHBDF2, INPP5D, ARHGAP24, TBXAS1, AC002429.2, SLC7A11, ENTPD1 
##     PITPNC1, C3, ATP1A2, AQP4, AC008691.1, NHSL1, RREB1, CSGALNACT1, LRMDA, CACHD1 
## Negative:  HHIP, CNP, GPR37, CRYAB, TF, MBP, ENPP2, UGT8, CLMN, PALM2 
##     SPP1, ST18, LPAR1, EDIL3, BCAS1, CTNNA3, OLIG1, SYNJ2, RGCC, RNF220 
##     LINC01630, LINC01170, FAM107B, SLC24A2, SLC22A15, COL4A5, SPOCK3, KCNH8, SVEP1, RAPGEF5 
## PC_ 4 
## Positive:  APBB1IP, DOCK8, ADAM28, SLCO2B1, RHBDF2, INPP5D, TBXAS1, AC008691.1, C3, PALD1 
##     LPCAT2, CSF2RA, RCSD1, DOCK2, FYB1, A2M, ARHGAP25, LRMDA, LRRK1, SP100 
##     FLI1, CPED1, AOAH, MYO1F, CARD11, PLXDC2, SYNDIG1, DENND3, SKAP2, ARHGAP22 
## Negative:  MMD2, RFX4, GPC5, SLC1A2, RNF219-AS1, PITPNC1, TNC, CACHD1, ATP1A2, AC002429.2 
##     SLC4A4, CTNNA2, SLC7A11, NKAIN3, NPAS3, ATP13A4, RORA, RGMA, PTPRZ1, AQP4 
##     SPON1, LINC00511, ADGRV1, FGFR3, TFRC, SHROOM3, PARD3, ACSBG1, ARHGEF26, EYA2 
## PC_ 5 
## Positive:  SPARCL1, CLU, CCK, CREG2, THY1, GABRA1, DKK3, SNAP25, CAMK2A, VGF 
##     CHGA, VSNL1, PHYHIP, CHN1, PCSK1N, NEFL, NPTX1, OLFM1, SERPINI1, CHGB 
##     CABP1, HTR2A, MAL2, SV2B, DIRAS2, NRGN, ENC1, C11orf87, GABRB2, VSTM2A 
## Negative:  PLPPR1, PTPRD, KLHL1, CALN1, FRMD4A, SLC24A3, SYN3, ABI3BP, LUZP2, LIMS2 
##     RASGEF1C, KIAA1211, DAB1, LDLRAD4, FRMD3, MIAT, ST8SIA2, PLXNA4, FGF13, ROBO2 
##     MARCH1, KIRREL3, SEMA6D, XKR4, CCBE1, MYO16, ANKRD30BL, SCN9A, DOK5, SLC44A5 
## 22:24:35 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:24:35 Read 5748 rows and found 15 numeric columns
## 22:24:35 Using Annoy for neighbor search, n_neighbors = 30
## 22:24:35 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:24:35 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e914a3a657
## 22:24:35 Searching Annoy index using 1 thread, search_k = 3000
## 22:24:37 Annoy recall = 100%
## 22:24:38 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:24:39 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:24:39 Commencing optimization for 500 epochs, with 235384 positive edges
## 22:24:45 Optimization finished
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
## 
## 28yrs 45yrs 
##  2803  2701
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCAAGGATACGC-1_6      28yrs        881          593 15.4370034
## AAACCCAAGTTGGCTT-1_6      28yrs        384          308 12.7604167
## AAACCCAGTTGCTCAA-1_6      28yrs        277          246  3.6101083
## AAACGAAGTTACCTTT-1_6      28yrs        333          302  0.6006006
## AAACGAATCGAGTTGT-1_6      28yrs        285          224 14.7368421
## AAACGCTGTGGTCTCG-1_6      28yrs       5857         2537  1.5024757
##                      RNA_snn_res.0.05 seurat_clusters       cell_types
## AAACCCAAGGATACGC-1_6                5               5 oligodendrocytes
## AAACCCAAGTTGGCTT-1_6                6               6  bipolar_neurons
## AAACCCAGTTGCTCAA-1_6                6               6  bipolar_neurons
## AAACGAAGTTACCTTT-1_6                8               8        microglia
## AAACGAATCGAGTTGT-1_6                6               6  bipolar_neurons
## AAACGCTGTGGTCTCG-1_6                5               5 oligodendrocytes
## AAACCCAAGGATACGC-1_6 AAACCCAAGTTGGCTT-1_6 AAACCCAGTTGCTCAA-1_6 
##                28yrs                28yrs                28yrs 
## AAACGAAGTTACCTTT-1_6 AAACGAATCGAGTTGT-1_6 AAACGCTGTGGTCTCG-1_6 
##                28yrs                28yrs                28yrs 
## Levels: 28yrs 45yrs

## Prediction/classification_results:
##    0    1 
## 1289 1418
## Actual_classifications:
## 
##    0    1 
## 1349 1358
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1214   75
##          1  135 1283
##                                           
##                Accuracy : 0.9224          
##                  95% CI : (0.9117, 0.9322)
##     No Information Rate : 0.5017          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.8448          
##                                           
##  Mcnemar's Test P-Value : 4.673e-05       
##                                           
##             Sensitivity : 0.9448          
##             Specificity : 0.8999          
##          Pos Pred Value : 0.9048          
##          Neg Pred Value : 0.9418          
##              Prevalence : 0.5017          
##          Detection Rate : 0.4740          
##    Detection Prevalence : 0.5238          
##       Balanced Accuracy : 0.9223          
##                                           
##        'Positive' Class : 1               
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.9465
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             2797  -none-     numeric 
## covariate           53143  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         668  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  ST18, CLMN, ENPP2, DOCK5, TF, RNF220, NEAT1, SLC5A11, DOCK10, FA2H 
##     CDK18, CTNNA3, MBP, CRYAB, UGT8, BCAS1, TTYH2, HHIP, LINC00609, SPP1 
##     CNP, DAAM2, CERCAM, LPAR1, ATP10B, GLUL, PLD1, FAM107B, DOCK1, FRMD4B 
## Negative:  STXBP5L, AGBL4, MTUS2, RBFOX1, KSR2, CABP1, DLGAP2, CDH18, FGF14, AL117329.1 
##     CSMD1, KCNIP4, RIMS2, SYT1, ATRNL1, FSTL4, GABRB2, OPCML, FRMPD4, CHRM3 
##     GRM5, ASIC2, OLFM3, GRIN2A, KCNQ5, DGKB, STXBP5-AS1, LRRTM4, LRFN5, HCN1 
## PC_ 2 
## Positive:  MAP1B, ROBO2, SYT1, STMN2, TMSB10, SOX4, FGF13, ST8SIA2, KIAA1211, KCNH7 
##     EPHA3, CCBE1, ENC1, IGF2BP2, SYNE2, CLMP, RBFOX1, DCLK1, GAP43, NNAT 
##     NEFL, NEFM, FABP7, EPHA5, SLC44A5, DLX6-AS1, GRIP1, KLHL1, PGM2L1, NREP 
## Negative:  HPSE2, CDH20, NEAT1, HIF3A, ZNF98, CABLES1, RANBP3L, ATP1A2, ITPKB, COL5A3 
##     DGKG, FHIT, ALDH1L1, IL17RB, PREX2, ACOT11, PDE7B, GRAMD2B, GNA14, GJA1 
##     NEBL, GLUL, GPC5, RNF219-AS1, SASH1, DTNA, GFAP, BAG3, GLIS3, PAPLN 
## PC_ 3 
## Positive:  ST18, ENPP2, CTNNA3, CLMN, TF, MBP, RNF220, SLC24A2, SLC5A11, CDK18 
##     HHIP, FA2H, UGT8, EDIL3, AK5, BCAS1, PDE1C, PPM1H, RAPGEF5, DOCK10 
##     CNP, SPOCK3, PPP1R16B, CERCAM, PEX5L, PLD1, DOCK5, PCSK6, PLCL1, PALM2 
## Negative:  HPSE2, ARHGAP24, RANBP3L, ATP1A2, HIF3A, GJA1, ALDH1L1, RNF219-AS1, GFAP, SLC1A2 
##     MERTK, AQP4, SLC7A11, COL5A3, CABLES1, APOE, PITPNC1, PAPLN, SLC39A12, GPC5 
##     GNA14, ZNF98, GLIS3, F3, FAM189A2, PARD3, RFX4, FGFR3, PRDM16, BMPR1B 
## PC_ 4 
## Positive:  ERBB4, NKAIN3, LSAMP, SLC1A2, HIF3A, ROBO2, CTNNA2, PARD3, NRG3, PTPRD 
##     NPAS3, PTPRZ1, ATP1A2, HPSE2, AL589740.1, ADGRV1, MAGI2, PITPNC1, KIAA1211, NFIA 
##     LINC00511, FBXL7, ALDH1L1, MEIS2, RANBP3L, RYR3, PREX2, GFAP, RNF219-AS1, ADGRL3 
## Negative:  APBB1IP, DOCK8, ADAM28, RHBDF2, C3, TBXAS1, SLCO2B1, FYB1, PALD1, INPP5D 
##     DOCK2, SP100, LRMDA, AC074327.1, ATP8B4, LPCAT2, AC008691.1, RCSD1, ARHGAP25, RUNX1 
##     PIK3AP1, FLI1, DENND3, MYO1F, RBM47, A2M, AOAH, CPED1, HCK, LRRK1 
## PC_ 5 
## Positive:  CLU, SPARCL1, NRGN, CCK, HPSE2, DKK3, CHN1, CREG2, GJA1, RANBP3L 
##     CAMK2A, VSNL1, PHYHIP, AQP4, SV2B, GNA14, NEFL, GPC5, THY1, PAMR1 
##     GABRA1, RNF219-AS1, ITPKB, FAM107A, GFAP, ENC1, GLIS3, NECAB1, SLC39A12, GLUL 
## Negative:  AC004852.2, MEGF11, FERMT1, PCDH15, STK32A, LHFPL3, CSPG4, SMOC1, TMEM132C, SEMA5A 
##     CACNG5, GRIK1, DISC1, AFAP1L2, MYT1, ALK, MIR3681HG, ITGA8, PLPP4, VCAN 
##     AL445250.1, LUZP2, NXPH1, DSCAM, COL9A1, PDGFRA, TEK, CHST9, CHST11, GRID2 
## 22:26:03 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:26:03 Read 5504 rows and found 15 numeric columns
## 22:26:03 Using Annoy for neighbor search, n_neighbors = 30
## 22:26:03 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:26:03 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e945f11c85
## 22:26:03 Searching Annoy index using 1 thread, search_k = 3000
## 22:26:04 Annoy recall = 100%
## 22:26:05 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:26:07 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:26:07 Commencing optimization for 500 epochs, with 225422 positive edges
## 22:26:12 Optimization finished
## 
## excitatory_neurons2  inhibitory_neurons       early_neurons excitatory_neurons1 
##                5507                3732                3374                2290 
##                 opc    oligodendrocytes     bipolar_neurons      mature_neurons 
##                1895                1767                1603                1394 
##           microglia          astrocytes 
##                 973                 589
## 
## 45yrs 53yrs 
##  2701  2819
##                      orig.ident nCount_RNA nFeature_RNA percent.mt
## AAACCCACAGCCCACA-1_7      45yrs       2712         1450  2.6917404
## AAACCCAGTGATCATC-1_7      45yrs       1113          748  0.9883199
## AAACCCAGTGTTGATC-1_7      45yrs       2539         1353  3.4265459
## AAACCCAGTTGGGTTT-1_7      45yrs       8475         3164  0.3539823
## AAACCCATCCCTTGGT-1_7      45yrs      10934         3871  5.4691787
## AAACGAAAGTTTCGAC-1_7      45yrs       8511         3085  5.0875338
##                      RNA_snn_res.0.05 seurat_clusters          cell_types
## AAACCCACAGCCCACA-1_7                9               9          astrocytes
## AAACCCAGTGATCATC-1_7                4               4                 opc
## AAACCCAGTGTTGATC-1_7                9               9          astrocytes
## AAACCCAGTTGGGTTT-1_7                4               4                 opc
## AAACCCATCCCTTGGT-1_7                3               3 excitatory_neurons1
## AAACGAAAGTTTCGAC-1_7                3               3 excitatory_neurons1

## Prediction/classification_results:
##    0    1 
## 1665 1049
## Actual_classifications:
## 
##    0    1 
## 1314 1400
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1194  471
##          1  120  929
##                                           
##                Accuracy : 0.7822          
##                  95% CI : (0.7662, 0.7976)
##     No Information Rate : 0.5158          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.5676          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
##                                           
##             Sensitivity : 0.6636          
##             Specificity : 0.9087          
##          Pos Pred Value : 0.8856          
##          Neg Pred Value : 0.7171          
##              Prevalence : 0.5158          
##          Detection Rate : 0.3423          
##    Detection Prevalence : 0.3865          
##       Balanced Accuracy : 0.7861          
##                                           
##        'Positive' Class : 1               
## 
## Setting levels: control = 0, case = 1
## Warning in roc.default(response, predictor, auc = TRUE, ...): Deprecated use a
## matrix as predictor. Unexpected results may be produced, please pass a numeric
## vector.
## Setting direction: controls < cases
## Area under the curve: 0.8198
##                     Length Class      Mode    
## call                    6  -none-     call    
## response             2806  -none-     numeric 
## covariate           28060  -none-     numeric 
## model.list              2  -none-     list    
## err.fct                 1  -none-     function
## act.fct                 1  -none-     function
## linear.output           1  -none-     logical 
## data                21836  data.frame list    
## exclude                 0  -none-     NULL    
## net.result              1  -none-     list    
## weights                 1  -none-     list    
## generalized.weights     1  -none-     list    
## startweights            1  -none-     list    
## result.matrix         488  -none-     numeric

## Setting levels: control = 0, case = 1
## Warning in roc.default(x, predictor, plot = TRUE, ...): Deprecated use a matrix
## as predictor. Unexpected results may be produced, please pass a numeric vector.
## Setting direction: controls < cases

## PC_ 1 
## Positive:  AL117329.1, STXBP5L, CABP1, LINC01250, AGBL4, FSTL4, NIPAL2, KSR2, CDH18, CAMK2A 
##     SLC22A10, AC067956.1, DLGAP2, MTUS2, KCNIP4, FMN1, AC011287.1, ZMAT4, SLC35F3, CBLN2 
##     RYR2, DGKB, GRIN2A, ASIC2, OLFM3, GABRB2, NRGN, PHYHIP, HTR1E, KCNQ5 
## Negative:  ST18, RNF220, CLMN, ENPP2, NEAT1, FA2H, QKI, DOCK10, TF, SLC5A11 
##     FRMD4B, CTNNA3, CERCAM, CDK18, DAAM2, BCAS1, DOCK1, TTYH2, LINC00609, PCSK6 
##     ATP10B, FAM107B, ZBTB20, UGT8, PREX1, KCNH8, PIEZO2, MBP, RFTN2, FBXL7 
## PC_ 2 
## Positive:  ROBO2, MAP1B, STMN2, SYT1, RBFOX1, KCNH7, DCLK1, TMSB10, FGF13, SOX4 
##     GRIP1, KIAA1211, SLC44A5, GRIA1, FRMD4A, UNC5D, CCBE1, EPHA5, ST8SIA2, EPHA3 
##     CLMP, LINC01122, PTPRO, PLXNA4, C8orf34, KCNB2, IGF2BP2, NREP, DLX6-AS1, NELL2 
## Negative:  CDH20, NEAT1, HPSE2, IL17RB, FHIT, BAG3, COBL, ATP10B, COL5A3, ITPKB 
##     HIF3A, DGKG, CABLES1, ZNF98, DOCK1, KANK1, GFAP, ALDH1L1, FKBP5, HSPB1 
##     SASH1, PDE7B, SLC9A9, GRAMD2B, DNAJA4, RANBP3L, LMCD1-AS1, ATP1A2, GNA14, BCAS1 
## PC_ 3 
## Positive:  HPSE2, GFAP, HIF3A, ALDH1L1, ATP1A2, COL5A3, SLC1A2, RANBP3L, PITPNC1, CABLES1 
##     ZNF98, RNF219-AS1, PARD3, GNA14, FAM107A, GJA1, RFX4, IGFBP7, RYR3, ARHGAP24 
##     SLC7A11, SLC39A12, EYA2, PAMR1, PRDM16, F3, GLIS3, FAM189A2, COLEC12, RGS20 
## Negative:  ST18, RNF220, CDK18, CTNNA3, CLMN, MBP, ENPP2, CERCAM, TF, SLC5A11 
##     FA2H, SLC24A2, PCSK6, DOCK10, PDE1C, AK5, PIEZO2, MAN2A1, PLD1, POLR2F 
##     EDIL3, PLCL1, UGT8, ELMO1, BCAS1, PEX5L, KIF6, SPOCK3, LINC00609, PALM2 
## PC_ 4 
## Positive:  HPSE2, NEAT1, GFAP, RANBP3L, ITPKB, ARHGAP24, GNA14, COL5A3, RNF219-AS1, GLIS3 
##     ARHGAP26, GJA1, FAM107A, PAMR1, COLEC12, FAM189A2, ACSBG1, SLC39A12, SLC39A11, GRIN2C 
##     ZNF98, CLU, SLC7A11, IQCA1, AQP4, PAPLN, RGS20, IGFBP7, RYR3, APOE 
## Negative:  AC004852.2, PCDH15, ITGA8, LHFPL3, CSPG4, CRISPLD2, MIR3681HG, SMOC1, FERMT1, CACNG5 
##     BEST3, TMEM132C, GRIK1, SEMA5A, PLPP4, MYT1, AFAP1L2, ALK, PDGFRA, CHST9 
##     AL445250.1, CALCRL, NXPH1, PRRX1, C1QL1, CA10, GALNT13, TEK, NOS1, VCAN 
## PC_ 5 
## Positive:  RUNX1, FYB1, AC074327.1, LRMDA, TBXAS1, ADAM28, SP100, APBB1IP, DOCK2, PIK3AP1 
##     C3, CCDC26, INPP5D, RBM47, SLCO2B1, RHBDF2, LYN, ARHGAP15, AOAH, RCSD1 
##     ARHGAP24, MYO1F, FLI1, ATP8B4, PALD1, ARHGAP6, TGFBR2, SRGN, ARHGAP25, FAM129A 
## Negative:  MAGI2, GFAP, LSAMP, NRG3, CTNNA2, NPAS3, ERBB4, PTPRD, MAP1B, SLC1A2 
##     ALDH1L1, RANBP3L, GJA1, ROBO2, LIMCH1, COL5A3, HPSE2, RYR3, ATP1A2, ADGRV1 
##     FAM189A2, ACSBG1, FBXL7, SLC25A18, NKAIN2, CLU, FAM107A, NTRK2, PRDM16, AQP4 
## 22:28:00 UMAP embedding parameters a = 0.9922 b = 1.112
## 22:28:00 Read 5520 rows and found 15 numeric columns
## 22:28:00 Using Annoy for neighbor search, n_neighbors = 30
## 22:28:00 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 22:28:01 Writing NN index file to temp file /tmp/RtmpXcOcdQ/file55e92da5d860
## 22:28:01 Searching Annoy index using 1 thread, search_k = 3000
## 22:28:02 Annoy recall = 100%
## 22:28:03 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
## 22:28:05 Initializing from normalized Laplacian + noise (using RSpectra)
## 22:28:05 Commencing optimization for 500 epochs, with 228224 positive edges
## 22:28:10 Optimization finished

Heatmapped ordered list of early to late developmental genes from top to bottom determined by stage-wise neural network predictive classifications.

## 
## 17wks 20wks 22wks 26wks 28yrs 38wks 45yrs 53yrs 
##  2996  2912  2994  2954  2803  2945  2701  2819

Heatmapped ordered list of early to late developmental genes from top to bottom determined by annotated cell types.

R version 4.4.1 (2024-06-14) – “Race for Your Life” Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu

RStudio 2024.04.2+764 “Chocolate Cosmos” Release (e4392fc9ddc21961fd1d0efd47484b43f07a4177, 2024-06-05) for Ubuntu Jammy Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) rstudio/2024.04.2+764 Chrome/120.0.6099.291 Electron/28.3.1 Safari/537.36, Quarto 1.4.555