library(ggplot2)
library(lattice)
library(caret)
library(DataExplorer)
library(kernlab)
##
## Adjuntando el paquete: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Adjuntando el paquete: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
library(nnet)
df <- read.csv("C:\\Carpeta de R\\DBs\\heart.csv")
summary(df)
## age sex cp trestbps
## Min. :29.00 Min. :0.0000 Min. :0.0000 Min. : 94.0
## 1st Qu.:48.00 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:120.0
## Median :56.00 Median :1.0000 Median :1.0000 Median :130.0
## Mean :54.43 Mean :0.6956 Mean :0.9424 Mean :131.6
## 3rd Qu.:61.00 3rd Qu.:1.0000 3rd Qu.:2.0000 3rd Qu.:140.0
## Max. :77.00 Max. :1.0000 Max. :3.0000 Max. :200.0
## chol fbs restecg thalach
## Min. :126 Min. :0.0000 Min. :0.0000 Min. : 71.0
## 1st Qu.:211 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:132.0
## Median :240 Median :0.0000 Median :1.0000 Median :152.0
## Mean :246 Mean :0.1493 Mean :0.5298 Mean :149.1
## 3rd Qu.:275 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:166.0
## Max. :564 Max. :1.0000 Max. :2.0000 Max. :202.0
## exang oldpeak slope ca
## Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:0.0000
## Median :0.0000 Median :0.800 Median :1.000 Median :0.0000
## Mean :0.3366 Mean :1.072 Mean :1.385 Mean :0.7541
## 3rd Qu.:1.0000 3rd Qu.:1.800 3rd Qu.:2.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :6.200 Max. :2.000 Max. :4.0000
## thal target
## Min. :0.000 Min. :0.0000
## 1st Qu.:2.000 1st Qu.:0.0000
## Median :2.000 Median :1.0000
## Mean :2.324 Mean :0.5132
## 3rd Qu.:3.000 3rd Qu.:1.0000
## Max. :3.000 Max. :1.0000
str(df)
## 'data.frame': 1025 obs. of 14 variables:
## $ age : int 52 53 70 61 62 58 58 55 46 54 ...
## $ sex : int 1 1 1 1 0 0 1 1 1 1 ...
## $ cp : int 0 0 0 0 0 0 0 0 0 0 ...
## $ trestbps: int 125 140 145 148 138 100 114 160 120 122 ...
## $ chol : int 212 203 174 203 294 248 318 289 249 286 ...
## $ fbs : int 0 1 0 0 1 0 0 0 0 0 ...
## $ restecg : int 1 0 1 1 1 0 2 0 0 0 ...
## $ thalach : int 168 155 125 161 106 122 140 145 144 116 ...
## $ exang : int 0 1 1 0 0 0 0 1 0 1 ...
## $ oldpeak : num 1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
## $ slope : int 2 0 0 2 1 1 0 1 2 1 ...
## $ ca : int 2 0 0 1 3 0 3 1 0 2 ...
## $ thal : int 3 3 3 3 2 2 1 3 3 2 ...
## $ target : int 0 0 0 0 0 1 0 0 0 0 ...
plot_missing(df)
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$target, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
df$target <- as.factor(df$target)
entrenamiento$target <- as.factor(entrenamiento$target)
prueba$target <- as.factor(prueba$target)
modelo1 <- train(target ~ ., data=entrenamiento,
method = "svmLinear",
preProcess=c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(C=1))
resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
# Matriz de confusión
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$target)
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$target)
modelo2 <- train(target ~ ., data=entrenamiento,
method = "svmRadial",
preProcess=c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(sigma=1, C=1))
resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
# Matriz de confusión
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$target)
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$target)
modelo3 <- train(target ~ ., data=entrenamiento,
method = "svmPoly",
preProcess=c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(degree=1, scale=1, C=1))
resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
# Matriz de confusión
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$target)
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$target)
modelo4 <- train(target ~ ., data=entrenamiento,
method = "rpart",
preProcess=c("scale", "center"),
trControl = trainControl(method="cv", number=10),
tuneLength = 10)
resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)
# Matriz de confusión
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$target)
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$target)
modelo5 <- train(target ~ ., data=entrenamiento,
method="nnet",
preProcess=c("scale", "center"),
trControl=trainControl(method="cv", number=10))
## # weights: 16
## initial value 501.608993
## iter 10 value 303.085280
## iter 20 value 277.738916
## iter 30 value 272.091590
## iter 40 value 271.238055
## iter 50 value 270.564656
## iter 60 value 269.629343
## iter 70 value 269.490466
## iter 80 value 269.467957
## iter 90 value 269.385196
## iter 100 value 269.327539
## final value 269.327539
## stopped after 100 iterations
## # weights: 46
## initial value 522.574867
## iter 10 value 261.487478
## iter 20 value 223.030376
## iter 30 value 181.751492
## iter 40 value 164.791099
## iter 50 value 155.182052
## iter 60 value 146.208766
## iter 70 value 145.049097
## iter 80 value 144.791929
## iter 90 value 144.789494
## final value 144.789335
## converged
## # weights: 76
## initial value 515.705782
## iter 10 value 238.097498
## iter 20 value 171.547977
## iter 30 value 128.416301
## iter 40 value 109.536288
## iter 50 value 103.478559
## iter 60 value 96.202672
## iter 70 value 87.745630
## iter 80 value 85.977243
## iter 90 value 84.988532
## iter 100 value 83.950083
## final value 83.950083
## stopped after 100 iterations
## # weights: 16
## initial value 531.174394
## iter 10 value 313.563438
## iter 20 value 302.962146
## iter 30 value 291.708660
## iter 40 value 285.287134
## iter 50 value 284.651741
## iter 60 value 283.160089
## iter 70 value 276.678631
## iter 80 value 276.070540
## iter 90 value 270.693532
## iter 100 value 270.603041
## final value 270.603041
## stopped after 100 iterations
## # weights: 46
## initial value 490.015192
## iter 10 value 254.361668
## iter 20 value 230.979633
## iter 30 value 228.258661
## iter 40 value 223.486663
## iter 50 value 214.646694
## iter 60 value 212.281869
## iter 70 value 212.065944
## final value 212.065895
## converged
## # weights: 76
## initial value 560.862977
## iter 10 value 242.207686
## iter 20 value 201.684943
## iter 30 value 179.253427
## iter 40 value 170.791644
## iter 50 value 169.593790
## iter 60 value 165.898865
## iter 70 value 150.710357
## iter 80 value 134.135979
## iter 90 value 125.095224
## iter 100 value 122.576215
## final value 122.576215
## stopped after 100 iterations
## # weights: 16
## initial value 541.567609
## iter 10 value 364.939132
## iter 20 value 300.893875
## iter 30 value 277.272464
## iter 40 value 276.348114
## iter 50 value 263.044337
## iter 60 value 256.447442
## iter 70 value 256.196400
## iter 80 value 256.138058
## final value 256.136420
## converged
## # weights: 46
## initial value 485.740742
## iter 10 value 246.991499
## iter 20 value 188.337422
## iter 30 value 160.040470
## iter 40 value 144.588525
## iter 50 value 140.045363
## iter 60 value 138.965138
## iter 70 value 138.664846
## iter 80 value 138.160641
## iter 90 value 137.895869
## iter 100 value 137.720669
## final value 137.720669
## stopped after 100 iterations
## # weights: 76
## initial value 494.813660
## iter 10 value 240.353424
## iter 20 value 148.781908
## iter 30 value 99.000581
## iter 40 value 87.433815
## iter 50 value 85.246637
## iter 60 value 82.651624
## iter 70 value 80.449132
## iter 80 value 79.482379
## iter 90 value 79.264913
## iter 100 value 79.139853
## final value 79.139853
## stopped after 100 iterations
## # weights: 16
## initial value 495.761239
## iter 10 value 262.743205
## iter 20 value 255.589292
## iter 30 value 244.752320
## iter 40 value 244.172038
## iter 50 value 244.166418
## iter 60 value 244.164991
## final value 244.164722
## converged
## # weights: 46
## initial value 549.470350
## iter 10 value 232.885800
## iter 20 value 182.512277
## iter 30 value 169.197290
## iter 40 value 154.745400
## iter 50 value 141.323782
## iter 60 value 139.565730
## iter 70 value 139.538871
## final value 139.538516
## converged
## # weights: 76
## initial value 573.327113
## iter 10 value 197.717940
## iter 20 value 112.743469
## iter 30 value 74.105233
## iter 40 value 53.620146
## iter 50 value 49.458499
## iter 60 value 47.822150
## iter 70 value 47.623889
## iter 80 value 47.604862
## iter 90 value 47.596031
## iter 100 value 47.586046
## final value 47.586046
## stopped after 100 iterations
## # weights: 16
## initial value 494.520214
## iter 10 value 307.466497
## iter 20 value 272.033981
## iter 30 value 270.769478
## iter 40 value 270.049326
## iter 50 value 269.983242
## final value 269.982362
## converged
## # weights: 46
## initial value 523.919817
## iter 10 value 278.136113
## iter 20 value 264.054922
## iter 30 value 253.136670
## iter 40 value 221.105634
## iter 50 value 209.316345
## iter 60 value 193.542004
## iter 70 value 189.785813
## iter 80 value 181.335717
## iter 90 value 178.765791
## iter 100 value 178.694753
## final value 178.694753
## stopped after 100 iterations
## # weights: 76
## initial value 458.163126
## iter 10 value 239.738804
## iter 20 value 190.112595
## iter 30 value 157.003826
## iter 40 value 144.671150
## iter 50 value 140.439213
## iter 60 value 137.776009
## iter 70 value 130.061931
## iter 80 value 128.170257
## iter 90 value 128.013517
## iter 100 value 127.961233
## final value 127.961233
## stopped after 100 iterations
## # weights: 16
## initial value 558.127915
## iter 10 value 328.458226
## iter 20 value 286.635176
## iter 30 value 278.940736
## iter 40 value 272.009299
## iter 50 value 269.142302
## iter 60 value 267.606628
## iter 70 value 267.592332
## iter 80 value 267.587074
## iter 90 value 267.586641
## final value 267.586624
## converged
## # weights: 46
## initial value 578.431238
## iter 10 value 233.234118
## iter 20 value 201.629784
## iter 30 value 185.850659
## iter 40 value 160.932787
## iter 50 value 154.800125
## iter 60 value 153.941052
## iter 70 value 153.435193
## iter 80 value 152.980896
## iter 90 value 152.581699
## iter 100 value 151.996075
## final value 151.996075
## stopped after 100 iterations
## # weights: 76
## initial value 551.427635
## iter 10 value 212.817771
## iter 20 value 130.369270
## iter 30 value 108.423394
## iter 40 value 101.183420
## iter 50 value 93.156118
## iter 60 value 92.203352
## iter 70 value 92.060260
## iter 80 value 91.999124
## iter 90 value 91.873651
## iter 100 value 91.561444
## final value 91.561444
## stopped after 100 iterations
## # weights: 16
## initial value 499.717620
## iter 10 value 305.175224
## iter 20 value 280.639642
## iter 30 value 269.887436
## iter 40 value 267.369359
## iter 50 value 265.618588
## iter 60 value 265.284730
## iter 70 value 265.238428
## iter 80 value 265.086833
## iter 90 value 264.947294
## iter 100 value 264.944085
## final value 264.944085
## stopped after 100 iterations
## # weights: 46
## initial value 561.612701
## iter 10 value 256.676245
## iter 20 value 189.171312
## iter 30 value 167.674197
## iter 40 value 155.017446
## iter 50 value 144.744988
## iter 60 value 134.109536
## iter 70 value 133.005718
## iter 80 value 133.002112
## iter 90 value 132.962268
## iter 100 value 132.894606
## final value 132.894606
## stopped after 100 iterations
## # weights: 76
## initial value 521.378929
## iter 10 value 231.913732
## iter 20 value 146.133755
## iter 30 value 101.598923
## iter 40 value 90.261559
## iter 50 value 86.114038
## iter 60 value 84.562705
## iter 70 value 84.316777
## iter 80 value 83.709395
## iter 90 value 83.577937
## iter 100 value 83.479398
## final value 83.479398
## stopped after 100 iterations
## # weights: 16
## initial value 550.592788
## iter 10 value 283.628272
## iter 20 value 276.008886
## iter 30 value 272.291056
## iter 40 value 271.735169
## iter 50 value 270.876231
## iter 60 value 270.189251
## iter 60 value 270.189249
## iter 60 value 270.189249
## final value 270.189249
## converged
## # weights: 46
## initial value 545.898892
## iter 10 value 272.238053
## iter 20 value 235.052743
## iter 30 value 209.912873
## iter 40 value 199.279654
## iter 50 value 197.077568
## iter 60 value 196.386769
## iter 70 value 196.256589
## iter 80 value 196.172734
## iter 90 value 196.159338
## final value 196.159220
## converged
## # weights: 76
## initial value 501.713568
## iter 10 value 236.954878
## iter 20 value 192.909041
## iter 30 value 166.180582
## iter 40 value 149.755980
## iter 50 value 136.923777
## iter 60 value 131.947677
## iter 70 value 130.486909
## iter 80 value 128.228701
## iter 90 value 126.193458
## iter 100 value 126.053806
## final value 126.053806
## stopped after 100 iterations
## # weights: 16
## initial value 519.070143
## iter 10 value 349.702591
## iter 20 value 332.508332
## iter 30 value 304.832779
## iter 40 value 287.463898
## iter 50 value 277.033129
## iter 60 value 276.058458
## iter 70 value 275.855854
## iter 80 value 275.665236
## iter 90 value 275.661282
## iter 100 value 275.658151
## final value 275.658151
## stopped after 100 iterations
## # weights: 46
## initial value 514.240160
## iter 10 value 234.974383
## iter 20 value 193.149227
## iter 30 value 174.450760
## iter 40 value 159.540499
## iter 50 value 149.243329
## iter 60 value 146.912170
## iter 70 value 143.659613
## iter 80 value 142.109491
## iter 90 value 141.606538
## iter 100 value 141.095134
## final value 141.095134
## stopped after 100 iterations
## # weights: 76
## initial value 545.282034
## iter 10 value 207.875500
## iter 20 value 134.309701
## iter 30 value 104.909072
## iter 40 value 78.748709
## iter 50 value 68.492524
## iter 60 value 63.995719
## iter 70 value 63.533258
## iter 80 value 63.117001
## iter 90 value 62.064573
## iter 100 value 61.036596
## final value 61.036596
## stopped after 100 iterations
## # weights: 16
## initial value 508.419251
## iter 10 value 278.269246
## iter 20 value 255.811002
## iter 30 value 245.202308
## iter 40 value 235.841740
## iter 50 value 235.273145
## iter 60 value 235.197731
## iter 70 value 235.196577
## iter 80 value 235.194069
## iter 90 value 235.186062
## iter 100 value 235.184600
## final value 235.184600
## stopped after 100 iterations
## # weights: 46
## initial value 667.458053
## iter 10 value 264.359496
## iter 20 value 200.104663
## iter 30 value 167.500939
## iter 40 value 149.822138
## iter 50 value 139.339313
## iter 60 value 136.433400
## iter 70 value 124.430857
## iter 80 value 119.842477
## iter 90 value 119.190039
## iter 100 value 118.860953
## final value 118.860953
## stopped after 100 iterations
## # weights: 76
## initial value 507.148145
## iter 10 value 242.786954
## iter 20 value 151.321551
## iter 30 value 123.495642
## iter 40 value 109.433714
## iter 50 value 104.684851
## iter 60 value 102.166042
## iter 70 value 101.613127
## iter 80 value 101.505343
## iter 90 value 101.496326
## iter 100 value 101.493958
## final value 101.493958
## stopped after 100 iterations
## # weights: 16
## initial value 532.389387
## iter 10 value 353.868341
## iter 20 value 275.603309
## iter 30 value 271.944298
## iter 40 value 267.757128
## iter 50 value 267.041263
## iter 60 value 266.546117
## iter 70 value 266.475086
## iter 70 value 266.475083
## iter 70 value 266.475083
## final value 266.475083
## converged
## # weights: 46
## initial value 522.462882
## iter 10 value 256.434827
## iter 20 value 218.706181
## iter 30 value 211.613251
## iter 40 value 192.399316
## iter 50 value 172.793734
## iter 60 value 168.575534
## iter 70 value 166.867637
## iter 80 value 166.800857
## final value 166.800816
## converged
## # weights: 76
## initial value 518.440362
## iter 10 value 227.693395
## iter 20 value 182.314629
## iter 30 value 168.257957
## iter 40 value 159.775336
## iter 50 value 154.329105
## iter 60 value 150.865413
## iter 70 value 146.753316
## iter 80 value 144.983921
## iter 90 value 143.158478
## iter 100 value 142.376788
## final value 142.376788
## stopped after 100 iterations
## # weights: 16
## initial value 537.949737
## iter 10 value 352.037745
## iter 20 value 295.654814
## iter 30 value 286.566682
## iter 40 value 280.409892
## iter 50 value 278.531947
## iter 60 value 273.839553
## iter 70 value 273.697034
## iter 80 value 273.688851
## iter 90 value 273.685812
## iter 100 value 273.683674
## final value 273.683674
## stopped after 100 iterations
## # weights: 46
## initial value 618.006240
## iter 10 value 284.116794
## iter 20 value 239.147319
## iter 30 value 206.487305
## iter 40 value 180.093008
## iter 50 value 168.156632
## iter 60 value 165.715658
## iter 70 value 164.471156
## iter 80 value 163.482066
## iter 90 value 162.989076
## iter 100 value 162.450097
## final value 162.450097
## stopped after 100 iterations
## # weights: 76
## initial value 561.243753
## iter 10 value 243.164396
## iter 20 value 161.181030
## iter 30 value 127.094391
## iter 40 value 102.449338
## iter 50 value 91.731751
## iter 60 value 89.376930
## iter 70 value 88.457276
## iter 80 value 87.868953
## iter 90 value 87.485003
## iter 100 value 87.387063
## final value 87.387063
## stopped after 100 iterations
## # weights: 16
## initial value 548.364764
## iter 10 value 331.113275
## iter 20 value 271.780231
## iter 30 value 260.582785
## iter 40 value 258.095663
## iter 50 value 250.300608
## iter 60 value 233.319191
## final value 233.192830
## converged
## # weights: 46
## initial value 625.997743
## iter 10 value 259.610999
## iter 20 value 211.051686
## iter 30 value 177.160554
## iter 40 value 161.058387
## iter 50 value 152.615103
## iter 60 value 152.327742
## iter 70 value 152.326413
## final value 152.326292
## converged
## # weights: 76
## initial value 575.392742
## iter 10 value 212.489967
## iter 20 value 153.875648
## iter 30 value 105.269151
## iter 40 value 93.446827
## iter 50 value 86.100233
## iter 60 value 74.384193
## iter 70 value 67.247274
## iter 80 value 62.649670
## iter 90 value 56.829710
## iter 100 value 51.906432
## final value 51.906432
## stopped after 100 iterations
## # weights: 16
## initial value 546.390766
## iter 10 value 287.731739
## iter 20 value 276.460393
## iter 30 value 272.567094
## iter 40 value 271.998637
## iter 50 value 271.763684
## final value 271.737911
## converged
## # weights: 46
## initial value 537.656495
## iter 10 value 239.256594
## iter 20 value 206.573544
## iter 30 value 198.329741
## iter 40 value 188.771717
## iter 50 value 176.918623
## iter 60 value 168.779178
## iter 70 value 166.077115
## iter 80 value 165.972312
## iter 90 value 165.959665
## final value 165.959586
## converged
## # weights: 76
## initial value 631.896899
## iter 10 value 270.034581
## iter 20 value 216.612174
## iter 30 value 191.020909
## iter 40 value 177.529454
## iter 50 value 171.884915
## iter 60 value 169.474284
## iter 70 value 168.557214
## iter 80 value 168.064472
## iter 90 value 167.396426
## iter 100 value 165.234901
## final value 165.234901
## stopped after 100 iterations
## # weights: 16
## initial value 518.934268
## iter 10 value 295.265851
## iter 20 value 263.133649
## iter 30 value 258.419928
## iter 40 value 250.126210
## iter 50 value 246.120392
## iter 60 value 244.391969
## iter 70 value 244.264271
## iter 80 value 244.257460
## iter 90 value 244.254647
## iter 100 value 244.254344
## final value 244.254344
## stopped after 100 iterations
## # weights: 46
## initial value 478.753391
## iter 10 value 271.866491
## iter 20 value 228.085287
## iter 30 value 197.628652
## iter 40 value 176.701806
## iter 50 value 174.130542
## iter 60 value 171.530304
## iter 70 value 170.968224
## iter 80 value 170.869405
## iter 90 value 170.686598
## iter 100 value 170.494102
## final value 170.494102
## stopped after 100 iterations
## # weights: 76
## initial value 586.141179
## iter 10 value 252.114678
## iter 20 value 186.394151
## iter 30 value 157.575027
## iter 40 value 133.202021
## iter 50 value 115.102382
## iter 60 value 108.100838
## iter 70 value 106.574854
## iter 80 value 105.814555
## iter 90 value 105.303116
## iter 100 value 102.956747
## final value 102.956747
## stopped after 100 iterations
## # weights: 16
## initial value 547.723145
## iter 10 value 277.870791
## iter 20 value 268.523595
## iter 30 value 267.383603
## iter 40 value 266.924902
## iter 50 value 266.214193
## iter 60 value 265.136303
## iter 70 value 264.978996
## iter 80 value 264.918352
## iter 90 value 264.776059
## iter 100 value 264.714876
## final value 264.714876
## stopped after 100 iterations
## # weights: 46
## initial value 486.170215
## iter 10 value 224.840397
## iter 20 value 193.701497
## iter 30 value 168.511636
## iter 40 value 154.990536
## iter 50 value 151.483646
## iter 60 value 148.745970
## iter 70 value 146.334627
## iter 80 value 144.407981
## iter 90 value 142.671317
## iter 100 value 142.019934
## final value 142.019934
## stopped after 100 iterations
## # weights: 76
## initial value 561.225487
## iter 10 value 233.836964
## iter 20 value 137.862589
## iter 30 value 100.707660
## iter 40 value 87.280258
## iter 50 value 82.372126
## iter 60 value 79.965188
## iter 70 value 78.970956
## iter 80 value 78.849107
## iter 90 value 78.833768
## iter 100 value 78.831650
## final value 78.831650
## stopped after 100 iterations
## # weights: 16
## initial value 499.794993
## iter 10 value 297.618560
## iter 20 value 273.832188
## iter 30 value 268.410128
## iter 40 value 268.347593
## final value 268.347582
## converged
## # weights: 46
## initial value 518.826719
## iter 10 value 246.808813
## iter 20 value 236.849143
## iter 30 value 200.394083
## iter 40 value 189.123940
## iter 50 value 187.903610
## iter 60 value 187.423673
## iter 70 value 187.161980
## iter 80 value 187.159754
## iter 80 value 187.159753
## iter 80 value 187.159752
## final value 187.159752
## converged
## # weights: 76
## initial value 553.004921
## iter 10 value 236.855956
## iter 20 value 183.916607
## iter 30 value 165.690450
## iter 40 value 148.804191
## iter 50 value 138.960302
## iter 60 value 135.569243
## iter 70 value 134.309488
## iter 80 value 132.837211
## iter 90 value 132.094023
## iter 100 value 131.978105
## final value 131.978105
## stopped after 100 iterations
## # weights: 16
## initial value 517.537021
## iter 10 value 261.511034
## iter 20 value 252.936656
## iter 30 value 250.754826
## iter 40 value 243.009847
## iter 50 value 241.101617
## iter 60 value 240.122647
## iter 70 value 239.768211
## iter 80 value 239.757244
## iter 90 value 239.755256
## iter 100 value 239.753417
## final value 239.753417
## stopped after 100 iterations
## # weights: 46
## initial value 562.195937
## iter 10 value 294.555121
## iter 20 value 243.197868
## iter 30 value 224.058670
## iter 40 value 215.154644
## iter 50 value 201.016621
## iter 60 value 191.879932
## iter 70 value 182.898140
## iter 80 value 181.076767
## iter 90 value 180.952181
## iter 100 value 180.488575
## final value 180.488575
## stopped after 100 iterations
## # weights: 76
## initial value 535.988042
## iter 10 value 198.997262
## iter 20 value 127.844150
## iter 30 value 93.896868
## iter 40 value 73.722722
## iter 50 value 66.719004
## iter 60 value 62.970285
## iter 70 value 59.314578
## iter 80 value 58.705962
## iter 90 value 58.438658
## iter 100 value 58.315681
## final value 58.315681
## stopped after 100 iterations
## # weights: 16
## initial value 523.919988
## iter 10 value 351.344657
## iter 20 value 269.278258
## iter 30 value 267.724626
## iter 40 value 267.097790
## iter 50 value 266.949508
## iter 60 value 266.586505
## iter 70 value 266.478816
## iter 80 value 266.469723
## iter 90 value 266.439708
## iter 100 value 266.382949
## final value 266.382949
## stopped after 100 iterations
## # weights: 46
## initial value 530.848696
## iter 10 value 262.219044
## iter 20 value 214.659376
## iter 30 value 182.470731
## iter 40 value 158.313032
## iter 50 value 124.892579
## iter 60 value 107.816408
## iter 70 value 105.871139
## iter 80 value 105.516487
## iter 90 value 105.425752
## iter 100 value 105.392620
## final value 105.392620
## stopped after 100 iterations
## # weights: 76
## initial value 572.283358
## iter 10 value 246.627413
## iter 20 value 196.517003
## iter 30 value 104.880863
## iter 40 value 81.237477
## iter 50 value 76.907629
## iter 60 value 74.481730
## iter 70 value 72.031626
## iter 80 value 65.753755
## iter 90 value 65.064301
## iter 100 value 65.003109
## final value 65.003109
## stopped after 100 iterations
## # weights: 16
## initial value 523.788681
## iter 10 value 288.412022
## iter 20 value 275.024141
## iter 30 value 273.266281
## final value 273.264648
## converged
## # weights: 46
## initial value 519.927750
## iter 10 value 280.643271
## iter 20 value 248.835772
## iter 30 value 222.731065
## iter 40 value 217.707456
## iter 50 value 205.272451
## iter 60 value 200.380015
## iter 70 value 197.195682
## iter 80 value 196.803246
## iter 90 value 196.795646
## final value 196.795607
## converged
## # weights: 76
## initial value 514.204376
## iter 10 value 247.422184
## iter 20 value 196.162391
## iter 30 value 158.978933
## iter 40 value 145.385683
## iter 50 value 139.489708
## iter 60 value 137.068384
## iter 70 value 135.094972
## iter 80 value 134.633127
## iter 90 value 134.248488
## iter 100 value 133.433726
## final value 133.433726
## stopped after 100 iterations
## # weights: 16
## initial value 523.018837
## iter 10 value 328.439989
## iter 20 value 275.692345
## iter 30 value 269.276793
## iter 40 value 268.434512
## iter 50 value 266.784920
## iter 60 value 260.294871
## iter 70 value 255.547312
## iter 80 value 249.739257
## iter 90 value 249.065001
## iter 100 value 248.595532
## final value 248.595532
## stopped after 100 iterations
## # weights: 46
## initial value 562.711421
## iter 10 value 249.121632
## iter 20 value 208.114792
## iter 30 value 185.389052
## iter 40 value 172.443420
## iter 50 value 157.307223
## iter 60 value 156.598485
## iter 70 value 156.337113
## iter 80 value 156.169520
## iter 90 value 155.928760
## iter 100 value 155.844542
## final value 155.844542
## stopped after 100 iterations
## # weights: 76
## initial value 480.930030
## iter 10 value 237.567284
## iter 20 value 154.299590
## iter 30 value 119.811674
## iter 40 value 102.237661
## iter 50 value 99.108931
## iter 60 value 98.836572
## iter 70 value 98.713650
## iter 80 value 98.662764
## iter 90 value 98.575091
## iter 100 value 98.522810
## final value 98.522810
## stopped after 100 iterations
## # weights: 16
## initial value 548.601740
## iter 10 value 335.559247
## iter 20 value 282.085469
## iter 30 value 279.100390
## iter 40 value 278.883847
## iter 50 value 277.968075
## iter 60 value 276.448429
## iter 70 value 276.096736
## iter 80 value 276.066943
## iter 90 value 275.828427
## iter 100 value 275.737719
## final value 275.737719
## stopped after 100 iterations
## # weights: 46
## initial value 502.546361
## iter 10 value 268.212459
## iter 20 value 221.323931
## iter 30 value 193.439436
## iter 40 value 186.862433
## iter 50 value 180.978607
## iter 60 value 175.852463
## iter 70 value 175.690710
## final value 175.690397
## converged
## # weights: 76
## initial value 582.707803
## iter 10 value 266.889034
## iter 20 value 187.334196
## iter 30 value 124.428001
## iter 40 value 96.210153
## iter 50 value 86.419860
## iter 60 value 83.635620
## iter 70 value 82.097752
## iter 80 value 81.433832
## iter 90 value 81.070809
## iter 100 value 80.944839
## final value 80.944839
## stopped after 100 iterations
## # weights: 16
## initial value 514.084721
## iter 10 value 365.451803
## iter 20 value 283.401442
## iter 30 value 280.218758
## iter 40 value 280.193282
## final value 280.193238
## converged
## # weights: 46
## initial value 539.264469
## iter 10 value 291.860084
## iter 20 value 253.814758
## iter 30 value 231.480194
## iter 40 value 225.959467
## iter 50 value 220.846829
## iter 60 value 212.093395
## iter 70 value 207.059926
## iter 80 value 206.819349
## iter 90 value 205.284331
## iter 100 value 204.054162
## final value 204.054162
## stopped after 100 iterations
## # weights: 76
## initial value 489.361337
## iter 10 value 237.736287
## iter 20 value 197.194673
## iter 30 value 180.001210
## iter 40 value 162.651827
## iter 50 value 141.310462
## iter 60 value 133.848915
## iter 70 value 131.194976
## iter 80 value 127.235640
## iter 90 value 125.578180
## iter 100 value 125.350777
## final value 125.350777
## stopped after 100 iterations
## # weights: 16
## initial value 518.246253
## iter 10 value 313.361249
## iter 20 value 311.198385
## iter 30 value 301.499581
## iter 40 value 289.664891
## iter 50 value 284.817532
## iter 60 value 284.613326
## iter 70 value 284.603610
## iter 70 value 284.603610
## final value 284.603610
## converged
## # weights: 46
## initial value 563.000810
## iter 10 value 250.797083
## iter 20 value 181.876400
## iter 30 value 152.505346
## iter 40 value 136.981640
## iter 50 value 128.895413
## iter 60 value 121.583731
## iter 70 value 120.252337
## iter 80 value 114.729776
## iter 90 value 111.494677
## iter 100 value 110.288640
## final value 110.288640
## stopped after 100 iterations
## # weights: 76
## initial value 538.891637
## iter 10 value 227.115987
## iter 20 value 134.320227
## iter 30 value 98.211881
## iter 40 value 84.544035
## iter 50 value 76.193597
## iter 60 value 70.798072
## iter 70 value 67.118037
## iter 80 value 65.128391
## iter 90 value 62.693899
## iter 100 value 61.328871
## final value 61.328871
## stopped after 100 iterations
## # weights: 16
## initial value 504.556441
## iter 10 value 335.405686
## iter 20 value 258.595702
## iter 30 value 249.392420
## iter 40 value 242.803492
## iter 50 value 240.626619
## iter 60 value 239.536576
## iter 70 value 238.813383
## iter 80 value 238.769494
## iter 90 value 238.759788
## iter 100 value 238.756445
## final value 238.756445
## stopped after 100 iterations
## # weights: 46
## initial value 633.956374
## iter 10 value 231.116788
## iter 20 value 164.915094
## iter 30 value 136.105833
## iter 40 value 124.213013
## iter 50 value 112.857306
## iter 60 value 111.058617
## iter 70 value 111.032545
## iter 80 value 111.031827
## iter 80 value 111.031825
## iter 80 value 111.031825
## final value 111.031825
## converged
## # weights: 76
## initial value 559.142983
## iter 10 value 242.710702
## iter 20 value 196.433817
## iter 30 value 161.623756
## iter 40 value 132.858058
## iter 50 value 117.075351
## iter 60 value 111.009350
## iter 70 value 106.345791
## iter 80 value 102.549270
## iter 90 value 99.320098
## iter 100 value 97.295130
## final value 97.295130
## stopped after 100 iterations
## # weights: 16
## initial value 544.580369
## iter 10 value 273.296518
## iter 20 value 264.077639
## final value 263.113587
## converged
## # weights: 46
## initial value 523.677517
## iter 10 value 273.659617
## iter 20 value 230.387658
## iter 30 value 200.632895
## iter 40 value 193.757968
## iter 50 value 192.773264
## iter 60 value 192.743761
## final value 192.743226
## converged
## # weights: 76
## initial value 569.418018
## iter 10 value 248.071004
## iter 20 value 203.029706
## iter 30 value 181.451649
## iter 40 value 169.946339
## iter 50 value 163.182653
## iter 60 value 160.676763
## iter 70 value 159.595647
## iter 80 value 156.538324
## iter 90 value 152.711105
## iter 100 value 151.698206
## final value 151.698206
## stopped after 100 iterations
## # weights: 16
## initial value 498.690624
## iter 10 value 318.273208
## iter 20 value 271.108243
## iter 30 value 263.076172
## iter 40 value 262.397643
## iter 50 value 262.327191
## iter 60 value 262.071015
## iter 70 value 262.009289
## iter 80 value 262.009028
## iter 90 value 262.000658
## final value 262.000650
## converged
## # weights: 46
## initial value 524.723394
## iter 10 value 264.264776
## iter 20 value 216.490973
## iter 30 value 202.711733
## iter 40 value 183.975125
## iter 50 value 172.943086
## iter 60 value 172.349378
## iter 70 value 172.223302
## iter 80 value 172.114440
## iter 90 value 171.315112
## iter 100 value 171.247567
## final value 171.247567
## stopped after 100 iterations
## # weights: 76
## initial value 597.243127
## iter 10 value 223.877466
## iter 20 value 142.690153
## iter 30 value 103.163597
## iter 40 value 97.207584
## iter 50 value 93.667068
## iter 60 value 92.363944
## iter 70 value 92.063823
## iter 80 value 91.954566
## iter 90 value 91.888477
## iter 100 value 91.815104
## final value 91.815104
## stopped after 100 iterations
## # weights: 16
## initial value 521.206815
## iter 10 value 440.124809
## iter 20 value 350.856317
## iter 30 value 277.027921
## iter 40 value 271.577789
## iter 50 value 270.506956
## iter 60 value 269.967641
## iter 70 value 269.841408
## iter 80 value 269.834155
## iter 90 value 269.802172
## iter 100 value 269.763849
## final value 269.763849
## stopped after 100 iterations
## # weights: 46
## initial value 594.154779
## iter 10 value 250.404211
## iter 20 value 217.172871
## iter 30 value 165.101773
## iter 40 value 149.192675
## iter 50 value 140.281429
## iter 60 value 138.592852
## iter 70 value 138.580254
## final value 138.580240
## converged
## # weights: 76
## initial value 592.135411
## iter 10 value 246.757858
## iter 20 value 163.005045
## iter 30 value 116.802392
## iter 40 value 105.264614
## iter 50 value 92.430188
## iter 60 value 87.557084
## iter 70 value 85.362888
## iter 80 value 84.645166
## iter 90 value 84.623078
## iter 100 value 84.614555
## final value 84.614555
## stopped after 100 iterations
## # weights: 16
## initial value 490.705547
## iter 10 value 319.703124
## iter 20 value 279.511157
## iter 30 value 271.560912
## final value 271.554651
## converged
## # weights: 46
## initial value 491.159737
## iter 10 value 256.748913
## iter 20 value 224.958815
## iter 30 value 205.055537
## iter 40 value 196.085087
## iter 50 value 194.992135
## iter 60 value 194.890753
## iter 70 value 194.880866
## final value 194.880851
## converged
## # weights: 76
## initial value 568.265619
## iter 10 value 232.001679
## iter 20 value 178.612541
## iter 30 value 156.505896
## iter 40 value 147.063278
## iter 50 value 142.379276
## iter 60 value 137.982141
## iter 70 value 133.476190
## iter 80 value 125.775175
## iter 90 value 119.958724
## iter 100 value 116.443264
## final value 116.443264
## stopped after 100 iterations
## # weights: 16
## initial value 515.685801
## iter 10 value 281.082819
## iter 20 value 272.253756
## iter 30 value 262.709792
## iter 40 value 256.726358
## iter 50 value 255.490960
## iter 60 value 250.199411
## iter 70 value 250.081791
## iter 80 value 250.080401
## iter 90 value 250.077970
## iter 100 value 250.045004
## final value 250.045004
## stopped after 100 iterations
## # weights: 46
## initial value 552.303115
## iter 10 value 291.495797
## iter 20 value 207.488503
## iter 30 value 190.457529
## iter 40 value 178.988995
## iter 50 value 175.377290
## iter 60 value 173.576882
## iter 70 value 172.736454
## iter 80 value 171.768852
## iter 90 value 171.138861
## iter 100 value 170.875667
## final value 170.875667
## stopped after 100 iterations
## # weights: 76
## initial value 501.305291
## iter 10 value 213.141130
## iter 20 value 156.703550
## iter 30 value 127.907908
## iter 40 value 113.607249
## iter 50 value 102.843034
## iter 60 value 101.102221
## iter 70 value 100.928528
## iter 80 value 100.841160
## iter 90 value 100.758529
## iter 100 value 100.669049
## final value 100.669049
## stopped after 100 iterations
## # weights: 76
## initial value 596.581003
## iter 10 value 250.647011
## iter 20 value 163.416651
## iter 30 value 112.173249
## iter 40 value 81.871766
## iter 50 value 71.970226
## iter 60 value 68.708798
## iter 70 value 68.176001
## iter 80 value 68.150074
## iter 90 value 68.145207
## iter 100 value 68.144025
## final value 68.144025
## stopped after 100 iterations
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
# Matriz de confusión
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$target)
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$target)
modelo6 <- train(target ~ ., data = entrenamiento,
method = "rf",
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number = 10))
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
# Matriz de Confusión
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$target)
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$target)
resultados <- data.frame(
"svmLinear" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
"svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precisión de Entrenamiento", "Precisión de Prueba")
resultados
## svmLinear svmRadial svmPoly rpart nnet
## Precisión de Entrenamiento 0.8426829 1 0.8426829 0.9012195 0.9719512
## Precisión de Prueba 0.8634146 1 0.8634146 0.8634146 0.9609756
## rf
## Precisión de Entrenamiento 1.0000000
## Precisión de Prueba 0.9853659
El modelo con el método de bosques aleatorios (rf) presenta un
sobreajuste, ya que tiene una alta precisión en entrenamiento pero baja
en prueba.
Acorde al resumen de resultados, el modelo mejor
evaluado es el de Máquina de Vectores de Soporte
Lineal.