1. Instalar paquetes y llamar librerías

#install.packages("neuralnet")
#install.packages("caret")
library(neuralnet)
library(caret)
## Cargando paquete requerido: ggplot2
## Cargando paquete requerido: lattice

2. Definir la informacion Utilizada

#Crear el Df directo del csv
df <- read.csv("C:\\Carpeta de R\\DBs\\cancer_de_mama.csv")
df$diagnosis <- ifelse(df$diagnosis == "M",1,0)


# Ver las primeras 10 filas del df
head(df, 10)
##    diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1          1       17.99        10.38         122.80    1001.0         0.11840
## 2          1       20.57        17.77         132.90    1326.0         0.08474
## 3          1       19.69        21.25         130.00    1203.0         0.10960
## 4          1       11.42        20.38          77.58     386.1         0.14250
## 5          1       20.29        14.34         135.10    1297.0         0.10030
## 6          1       12.45        15.70          82.57     477.1         0.12780
## 7          1       18.25        19.98         119.60    1040.0         0.09463
## 8          1       13.71        20.83          90.20     577.9         0.11890
## 9          1       13.00        21.82          87.50     519.8         0.12730
## 10         1       12.46        24.04          83.97     475.9         0.11860
##    compactness_mean concavity_mean concave_points_mean symmetry_mean
## 1           0.27760        0.30010             0.14710        0.2419
## 2           0.07864        0.08690             0.07017        0.1812
## 3           0.15990        0.19740             0.12790        0.2069
## 4           0.28390        0.24140             0.10520        0.2597
## 5           0.13280        0.19800             0.10430        0.1809
## 6           0.17000        0.15780             0.08089        0.2087
## 7           0.10900        0.11270             0.07400        0.1794
## 8           0.16450        0.09366             0.05985        0.2196
## 9           0.19320        0.18590             0.09353        0.2350
## 10          0.23960        0.22730             0.08543        0.2030
##    fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 1                 0.07871    1.0950     0.9053        8.589  153.40
## 2                 0.05667    0.5435     0.7339        3.398   74.08
## 3                 0.05999    0.7456     0.7869        4.585   94.03
## 4                 0.09744    0.4956     1.1560        3.445   27.23
## 5                 0.05883    0.7572     0.7813        5.438   94.44
## 6                 0.07613    0.3345     0.8902        2.217   27.19
## 7                 0.05742    0.4467     0.7732        3.180   53.91
## 8                 0.07451    0.5835     1.3770        3.856   50.96
## 9                 0.07389    0.3063     1.0020        2.406   24.32
## 10                0.08243    0.2976     1.5990        2.039   23.94
##    smoothness_se compactness_se concavity_se concave_points_se symmetry_se
## 1       0.006399        0.04904      0.05373           0.01587     0.03003
## 2       0.005225        0.01308      0.01860           0.01340     0.01389
## 3       0.006150        0.04006      0.03832           0.02058     0.02250
## 4       0.009110        0.07458      0.05661           0.01867     0.05963
## 5       0.011490        0.02461      0.05688           0.01885     0.01756
## 6       0.007510        0.03345      0.03672           0.01137     0.02165
## 7       0.004314        0.01382      0.02254           0.01039     0.01369
## 8       0.008805        0.03029      0.02488           0.01448     0.01486
## 9       0.005731        0.03502      0.03553           0.01226     0.02143
## 10      0.007149        0.07217      0.07743           0.01432     0.01789
##    fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1              0.006193        25.38         17.33          184.60     2019.0
## 2              0.003532        24.99         23.41          158.80     1956.0
## 3              0.004571        23.57         25.53          152.50     1709.0
## 4              0.009208        14.91         26.50           98.87      567.7
## 5              0.005115        22.54         16.67          152.20     1575.0
## 6              0.005082        15.47         23.75          103.40      741.6
## 7              0.002179        22.88         27.66          153.20     1606.0
## 8              0.005412        17.06         28.14          110.60      897.0
## 9              0.003749        15.49         30.73          106.20      739.3
## 10             0.010080        15.09         40.68           97.65      711.4
##    smoothness_worst compactness_worst concavity_worst concave_points_worst
## 1            0.1622            0.6656          0.7119               0.2654
## 2            0.1238            0.1866          0.2416               0.1860
## 3            0.1444            0.4245          0.4504               0.2430
## 4            0.2098            0.8663          0.6869               0.2575
## 5            0.1374            0.2050          0.4000               0.1625
## 6            0.1791            0.5249          0.5355               0.1741
## 7            0.1442            0.2576          0.3784               0.1932
## 8            0.1654            0.3682          0.2678               0.1556
## 9            0.1703            0.5401          0.5390               0.2060
## 10           0.1853            1.0580          1.1050               0.2210
##    symmetry_worst fractal_dimension_worst
## 1          0.4601                 0.11890
## 2          0.2750                 0.08902
## 3          0.3613                 0.08758
## 4          0.6638                 0.17300
## 5          0.2364                 0.07678
## 6          0.3985                 0.12440
## 7          0.3063                 0.08368
## 8          0.3196                 0.11510
## 9          0.4378                 0.10720
## 10         0.4366                 0.20750
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$diagnosis,p=0.8, list = FALSE)
entrenamiento <- df[renglones_entrenamiento,]
prueba <- df[-renglones_entrenamiento,]

3. Generar la Red Neuronal

red_neuronal <- neuralnet(diagnosis~., data=entrenamiento)
plot(red_neuronal, rep = "best")

4. Predecir con la Red Neuronal

CÓDIGO
prediccion <- compute(red_neuronal, prueba)
prediccion\(net.result<br> probabilidad <- prediccion\)net.result
resultado <- ifelse(probabilidad>0.5,1,0)

Presentacion de Porcentajes/Resultado.

df_resultado <- data.frame(PROBABILIDAD_TUMOR = probabilidad, RESULTADO_TUMOR = resultado)

print(df_resultado)
##     PROBABILIDAD_TUMOR RESULTADO_TUMOR
## 1            0.3486923               0
## 9            0.3486923               0
## 15           0.3486923               0
## 17           0.3486923               0
## 18           0.3486923               0
## 28           0.3486923               0
## 35           0.3486923               0
## 44           0.3486923               0
## 46           0.3486923               0
## 56           0.3486923               0
## 58           0.3486923               0
## 60           0.3486923               0
## 65           0.3486923               0
## 68           0.3486923               0
## 71           0.3486923               0
## 79           0.3486923               0
## 82           0.3486923               0
## 86           0.3486923               0
## 95           0.3486923               0
## 99           0.3486923               0
## 101          0.3486923               0
## 109          0.3486923               0
## 124          0.3486923               0
## 133          0.3486923               0
## 138          0.3486923               0
## 140          0.3486923               0
## 142          0.3486923               0
## 157          0.3486923               0
## 162          0.3486923               0
## 171          0.3486923               0
## 173          0.3486923               0
## 183          0.3486923               0
## 188          0.3486923               0
## 189          0.3486923               0
## 193          0.3486923               0
## 201          0.3486923               0
## 203          0.3486923               0
## 206          0.3486923               0
## 207          0.3486923               0
## 216          0.3486923               0
## 220          0.3486923               0
## 227          0.3486923               0
## 233          0.3486923               0
## 240          0.3486923               0
## 242          0.3486923               0
## 247          0.3486923               0
## 251          0.3486923               0
## 256          0.3486923               0
## 259          0.3486923               0
## 261          0.3486923               0
## 262          0.3486923               0
## 275          0.3486923               0
## 284          0.3486923               0
## 293          0.3486923               0
## 296          0.3486923               0
## 303          0.3486923               0
## 305          0.3486923               0
## 317          0.3486923               0
## 318          0.3486923               0
## 320          0.3486923               0
## 323          0.3486923               0
## 329          0.3486923               0
## 332          0.3486923               0
## 340          0.3486923               0
## 341          0.3486923               0
## 352          0.3486923               0
## 354          0.3486923               0
## 358          0.3486923               0
## 359          0.3486923               0
## 369          0.3486923               0
## 370          0.3486923               0
## 371          0.3486923               0
## 375          0.3486923               0
## 386          0.3486923               0
## 387          0.3486923               0
## 394          0.3486923               0
## 400          0.3486923               0
## 405          0.3486923               0
## 407          0.3486923               0
## 412          0.3486923               0
## 417          0.3486923               0
## 418          0.3486923               0
## 429          0.3486923               0
## 432          0.3486923               0
## 434          0.3486923               0
## 437          0.3486923               0
## 453          0.3486923               0
## 454          0.3486923               0
## 466          0.3486923               0
## 481          0.3486923               0
## 484          0.3486923               0
## 487          0.3486923               0
## 492          0.3486923               0
## 510          0.3486923               0
## 515          0.3486923               0
## 518          0.3486923               0
## 520          0.3486923               0
## 522          0.3486923               0
## 529          0.3486923               0
## 531          0.3486923               0
## 532          0.3486923               0
## 541          0.3486923               0
## 545          0.3486923               0
## 547          0.3486923               0
## 551          0.3486923               0
## 554          0.3486923               0
## 556          0.3486923               0
## 557          0.3486923               0
## 558          0.3486923               0
## 560          0.3486923               0
## 561          0.3486923               0
## 562          0.3486923               0
## 564          0.3486923               0

Conclusión

Las redes neuronales permiten que los programas reconozcan patrones y resuelvan problemas comunes en IA y aprendizaje automático.

LS0tDQp0aXRsZTogIlJlZCBOZXVyb25hbCBDYW5jZXIgZGUgTWFtYSINCmF1dGhvcjogIkVzdGViYW4gTG96YW5vIE1hbGRvbmFkbyINCmRhdGU6ICIyMDI0LTA4LTE1Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IHVuaXRlZA0KLS0tDQoNCiFbXShDOlxDYXJwZXRhIGRlIFJcSW1nc1xSZWRlc05ldXJvbmFsZXNpbWcuanBlZykNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4xLiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzPC9zcGFuPg0KYGBge3J9DQojaW5zdGFsbC5wYWNrYWdlcygibmV1cmFsbmV0IikNCiNpbnN0YWxsLnBhY2thZ2VzKCJjYXJldCIpDQpsaWJyYXJ5KG5ldXJhbG5ldCkNCmxpYnJhcnkoY2FyZXQpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4yLiBEZWZpbmlyIGxhIGluZm9ybWFjaW9uIFV0aWxpemFkYSA8L3NwYW4+DQpgYGB7cn0NCiNDcmVhciBlbCBEZiBkaXJlY3RvIGRlbCBjc3YNCmRmIDwtIHJlYWQuY3N2KCJDOlxcQ2FycGV0YSBkZSBSXFxEQnNcXGNhbmNlcl9kZV9tYW1hLmNzdiIpDQpkZiRkaWFnbm9zaXMgPC0gaWZlbHNlKGRmJGRpYWdub3NpcyA9PSAiTSIsMSwwKQ0KDQoNCiMgVmVyIGxhcyBwcmltZXJhcyAxMCBmaWxhcyBkZWwgZGYNCmhlYWQoZGYsIDEwKQ0KDQpzZXQuc2VlZCgxMjMpDQpyZW5nbG9uZXNfZW50cmVuYW1pZW50byA8LSBjcmVhdGVEYXRhUGFydGl0aW9uKGRmJGRpYWdub3NpcyxwPTAuOCwgbGlzdCA9IEZBTFNFKQ0KZW50cmVuYW1pZW50byA8LSBkZltyZW5nbG9uZXNfZW50cmVuYW1pZW50byxdDQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvLF0NCg0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+My4gR2VuZXJhciBsYSBSZWQgTmV1cm9uYWw8L3NwYW4+DQpgYGB7cn0NCnJlZF9uZXVyb25hbCA8LSBuZXVyYWxuZXQoZGlhZ25vc2lzfi4sIGRhdGE9ZW50cmVuYW1pZW50bykNCnBsb3QocmVkX25ldXJvbmFsLCByZXAgPSAiYmVzdCIpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij40LiBQcmVkZWNpciBjb24gbGEgUmVkIE5ldXJvbmFsPC9zcGFuPg0KQ8OTRElHTw0KPGJyPg0KcHJlZGljY2lvbiA8LSBjb21wdXRlKHJlZF9uZXVyb25hbCwgcHJ1ZWJhKTxicj4NCnByZWRpY2Npb24kbmV0LnJlc3VsdDxicj4NCnByb2JhYmlsaWRhZCA8LSBwcmVkaWNjaW9uJG5ldC5yZXN1bHQ8YnI+DQpyZXN1bHRhZG8gPC0gaWZlbHNlKHByb2JhYmlsaWRhZD4wLjUsMSwwKQ0KDQpgYGB7cixlY2hvID0gRkFMU0UsIHJlc3VsdHMgPSAiaGlkZSJ9DQpwcmVkaWNjaW9uIDwtIGNvbXB1dGUocmVkX25ldXJvbmFsLCBwcnVlYmEpDQpwcmVkaWNjaW9uJG5ldC5yZXN1bHQNCg0KcHJvYmFiaWxpZGFkIDwtIHByZWRpY2Npb24kbmV0LnJlc3VsdA0KcmVzdWx0YWRvIDwtIGlmZWxzZShwcm9iYWJpbGlkYWQ+MC41LDEsMCkNCmBgYA0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5QcmVzZW50YWNpb24gZGUgUG9yY2VudGFqZXMvUmVzdWx0YWRvLiA8L3NwYW4+DQpgYGB7cn0NCmRmX3Jlc3VsdGFkbyA8LSBkYXRhLmZyYW1lKFBST0JBQklMSURBRF9UVU1PUiA9IHByb2JhYmlsaWRhZCwgUkVTVUxUQURPX1RVTU9SID0gcmVzdWx0YWRvKQ0KDQpwcmludChkZl9yZXN1bHRhZG8pDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4gQ29uY2x1c2nDs24gPC9zcGFuPg0KDQpMYXMgcmVkZXMgbmV1cm9uYWxlcyBwZXJtaXRlbiBxdWUgbG9zIHByb2dyYW1hcyByZWNvbm96Y2FuIHBhdHJvbmVzIHkgcmVzdWVsdmFuIHByb2JsZW1hcyBjb211bmVzIGVuIElBIHkgYXByZW5kaXphamUgYXV0b23DoXRpY28uDQo=