Instalar paquetes y llamar librerías

#install.packages("e1071")
library(e1071)
#install.packages("caret") 
library(caret)

Crear la base de datos

df <- read.csv("C:\\Users\\maria\\OneDrive\\Desktop\\AD24\\Modulo 2\\heart.csv")

Análisis exploratorio

summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
df$target <- as.factor(df$target)
summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal       target 
##  Min.   :0.000   0:499  
##  1st Qu.:2.000   1:526  
##  Median :2.000          
##  Mean   :2.324          
##  3rd Qu.:3.000          
##  Max.   :3.000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...

Partir la base de datos

set.seed(123)
renglones_entrenamiento <- createDataPartition(df$target, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]

Construir el modelo SVM Linear

modelo <- svm(target ~ ., data = entrenamiento, kernel= "linear") #cambia


resultado_entrenamiento <- predict(modelo,entrenamiento)
resultado_prueba <- predict(modelo,prueba)

Matriz de Confusión

mcre <- confusionMatrix(resultado_entrenamiento, entrenamiento$target) # matriz de confusión del resultado del entrenamiento
mcre
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 301  37
##          1  99 384
##                                           
##                Accuracy : 0.8343          
##                  95% CI : (0.8071, 0.8592)
##     No Information Rate : 0.5128          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6672          
##                                           
##  Mcnemar's Test P-Value : 1.689e-07       
##                                           
##             Sensitivity : 0.7525          
##             Specificity : 0.9121          
##          Pos Pred Value : 0.8905          
##          Neg Pred Value : 0.7950          
##              Prevalence : 0.4872          
##          Detection Rate : 0.3666          
##    Detection Prevalence : 0.4117          
##       Balanced Accuracy : 0.8323          
##                                           
##        'Positive' Class : 0               
## 
mcrp <- confusionMatrix(resultado_prueba,prueba$target) # matriz de confusión del resultado de la prueba
mcrp
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 78 10
##          1 21 95
##                                           
##                Accuracy : 0.848           
##                  95% CI : (0.7913, 0.8944)
##     No Information Rate : 0.5147          
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.6948          
##                                           
##  Mcnemar's Test P-Value : 0.07249         
##                                           
##             Sensitivity : 0.7879          
##             Specificity : 0.9048          
##          Pos Pred Value : 0.8864          
##          Neg Pred Value : 0.8190          
##              Prevalence : 0.4853          
##          Detection Rate : 0.3824          
##    Detection Prevalence : 0.4314          
##       Balanced Accuracy : 0.8463          
##                                           
##        'Positive' Class : 0               
## 
resultados <- data.frame("SVM Linear" = c(mcre$overall["Accuracy"], mcrp$overall["Accuracy"]))
rownames(resultados) <- c("Precision de entrenamiento", "Precision de prueba")
resultados
##                            SVM.Linear
## Precision de entrenamiento  0.8343484
## Precision de prueba         0.8480392

Obtener predicción

paciente <- data.frame(
  age = 58,
  sex = 0,
  cp = 0,
  trestbps = 100,
  chol = 248,
  fbs = 0,
  restecg = 0,
  thalach = 122,
  exang = 0,
  oldpeak = 1,
  slope = 1,
  ca = 0,
  thal = 2
)

Hacer la predicción

prediccion <- predict(modelo, paciente)

if(prediccion == 1) {
  print("Tiene enfermedad cardiaca")
} else {
  print("No tiene enfermedad cardiaca")
}
## [1] "Tiene enfermedad cardiaca"

Conclusion

Una máquina de vectores de soporte (SVM) es un tipo de algoritmo de aprendizaje supervisado que se utiliza en el aprendizaje automático para resolver tareas de clasificación y regresión

LS0tDQp0aXRsZTogIk1hcXVpbmEgZGUgVmVjdG9yZXMgZGUgU29wb3J0ZSINCmF1dGhvcjogIk1hcmlhbmEgR2FyY2lhIEEwMTE3NzcwNSINCmRhdGU6ICIyMDI0LTA4LTIyIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfSANCmtuaXRyOjpvcHRzX2NodW5rJHNldCh3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSkgDQpgYGANCg0KIVtdKEM6XFxVc2Vyc1xcbWFyaWFcXE9uZURyaXZlXFxEZXNrdG9wXFxBRDI0XFxNb2R1bG8gMlxcYTBiY2E5ZTRiMzgwODM0NmQzMWEzN2M4MzFkYzA0NTkuZ2lmKQ0KDQojIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoImUxMDcxIikNCmxpYnJhcnkoZTEwNzEpDQojaW5zdGFsbC5wYWNrYWdlcygiY2FyZXQiKSANCmxpYnJhcnkoY2FyZXQpDQpgYGANCg0KIyBDcmVhciBsYSBiYXNlIGRlIGRhdG9zDQpgYGB7cn0NCmRmIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXG1hcmlhXFxPbmVEcml2ZVxcRGVza3RvcFxcQUQyNFxcTW9kdWxvIDJcXGhlYXJ0LmNzdiIpDQpgYGANCg0KIyBBbsOhbGlzaXMgZXhwbG9yYXRvcmlvDQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpkZiR0YXJnZXQgPC0gYXMuZmFjdG9yKGRmJHRhcmdldCkNCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpgYGANCg0KIyBQYXJ0aXIgbGEgYmFzZSBkZSBkYXRvcw0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpyZW5nbG9uZXNfZW50cmVuYW1pZW50byA8LSBjcmVhdGVEYXRhUGFydGl0aW9uKGRmJHRhcmdldCwgcD0wLjgsIGxpc3Q9RkFMU0UpDQplbnRyZW5hbWllbnRvIDwtIGRmW3Jlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdDQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdDQpgYGANCg0KIyBDb25zdHJ1aXIgZWwgbW9kZWxvIFNWTSBMaW5lYXINCmBgYHtyfQ0KbW9kZWxvIDwtIHN2bSh0YXJnZXQgfiAuLCBkYXRhID0gZW50cmVuYW1pZW50bywga2VybmVsPSAibGluZWFyIikgI2NhbWJpYQ0KDQoNCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvIDwtIHByZWRpY3QobW9kZWxvLGVudHJlbmFtaWVudG8pDQpyZXN1bHRhZG9fcHJ1ZWJhIDwtIHByZWRpY3QobW9kZWxvLHBydWViYSkNCg0KYGBgDQoNCg0KIyBNYXRyaXogZGUgQ29uZnVzacOzbg0KYGBge3J9DQptY3JlIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bywgZW50cmVuYW1pZW50byR0YXJnZXQpICMgbWF0cml6IGRlIGNvbmZ1c2nDs24gZGVsIHJlc3VsdGFkbyBkZWwgZW50cmVuYW1pZW50bw0KbWNyZQ0KbWNycCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYSxwcnVlYmEkdGFyZ2V0KSAjIG1hdHJpeiBkZSBjb25mdXNpw7NuIGRlbCByZXN1bHRhZG8gZGUgbGEgcHJ1ZWJhDQptY3JwDQoNCnJlc3VsdGFkb3MgPC0gZGF0YS5mcmFtZSgiU1ZNIExpbmVhciIgPSBjKG1jcmUkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycCRvdmVyYWxsWyJBY2N1cmFjeSJdKSkNCnJvd25hbWVzKHJlc3VsdGFkb3MpIDwtIGMoIlByZWNpc2lvbiBkZSBlbnRyZW5hbWllbnRvIiwgIlByZWNpc2lvbiBkZSBwcnVlYmEiKQ0KcmVzdWx0YWRvcw0KYGBgDQoNCg0KIyBPYnRlbmVyIHByZWRpY2Npw7NuDQpgYGB7cn0NCnBhY2llbnRlIDwtIGRhdGEuZnJhbWUoDQogIGFnZSA9IDU4LA0KICBzZXggPSAwLA0KICBjcCA9IDAsDQogIHRyZXN0YnBzID0gMTAwLA0KICBjaG9sID0gMjQ4LA0KICBmYnMgPSAwLA0KICByZXN0ZWNnID0gMCwNCiAgdGhhbGFjaCA9IDEyMiwNCiAgZXhhbmcgPSAwLA0KICBvbGRwZWFrID0gMSwNCiAgc2xvcGUgPSAxLA0KICBjYSA9IDAsDQogIHRoYWwgPSAyDQopDQpgYGANCg0KDQoNCiMgSGFjZXIgbGEgcHJlZGljY2nDs24NCmBgYHtyfQ0KcHJlZGljY2lvbiA8LSBwcmVkaWN0KG1vZGVsbywgcGFjaWVudGUpDQoNCmlmKHByZWRpY2Npb24gPT0gMSkgew0KICBwcmludCgiVGllbmUgZW5mZXJtZWRhZCBjYXJkaWFjYSIpDQp9IGVsc2Ugew0KICBwcmludCgiTm8gdGllbmUgZW5mZXJtZWRhZCBjYXJkaWFjYSIpDQp9DQpgYGANCg0KIyBDb25jbHVzaW9uDQpVbmEgbcOhcXVpbmEgZGUgdmVjdG9yZXMgZGUgc29wb3J0ZSAoU1ZNKSBlcyB1biB0aXBvIGRlIGFsZ29yaXRtbyBkZSBhcHJlbmRpemFqZSBzdXBlcnZpc2FkbyBxdWUgc2UgdXRpbGl6YSBlbiBlbCBhcHJlbmRpemFqZSBhdXRvbcOhdGljbyBwYXJhIHJlc29sdmVyIHRhcmVhcyBkZSBjbGFzaWZpY2FjacOzbiB5IHJlZ3Jlc2nDs24NCg==