#Instalar paquetes y llamar librerias

#install.packages("DataExplorer")
#install.packages("nycflights13")
library("DataExplorer")
library("nycflights13")

#Crear bases de datos

spotify<-read.csv("/Users/agustingomezperez/Desktop/Inteligencia Artificial/Most Streamed Spotify Songs 2024.csv")

#Obtener una grafica en particular

introduce(spotify)
##   rows columns discrete_columns continuous_columns all_missing_columns
## 1 4600      29               22                  6                   1
##   total_missing_values complete_rows total_observations memory_usage
## 1                 7941             0             133400      5679272
plot_intro(spotify)

plot_missing(spotify)

plot_histogram(spotify)

plot_bar(spotify)
## 22 columns ignored with more than 50 categories.
## Track: 4370 categories
## Album.Name: 4005 categories
## Artist: 2000 categories
## Release.Date: 1562 categories
## ISRC: 4598 categories
## All.Time.Rank: 4577 categories
## Spotify.Streams: 4426 categories
## Spotify.Playlist.Count: 4208 categories
## Spotify.Playlist.Reach: 4479 categories
## YouTube.Views: 4291 categories
## YouTube.Likes: 4284 categories
## TikTok.Posts: 3319 categories
## TikTok.Likes: 3616 categories
## TikTok.Views: 3617 categories
## YouTube.Playlist.Reach: 3459 categories
## AirPlay.Spins: 3268 categories
## SiriusXM.Spins: 690 categories
## Deezer.Playlist.Reach: 3559 categories
## Pandora.Streams: 3492 categories
## Pandora.Track.Stations: 2976 categories
## Soundcloud.Streams: 1266 categories
## Shazam.Counts: 4003 categories

plot_correlation(spotify)
## Warning in dummify(data, maxcat = maxcat): Ignored all discrete features since
## `maxcat` set to 20 categories!
## Warning: Removed 28 rows containing missing values or values outside the scale range
## (`geom_text()`).

#Conclusión

Data Explorer nos puede ayudar a analizar la estructura de nuestros datos de una manera gráfica más rápidamente que cualquier otro paquete, en este caso de spotify podemos ver a través de gráficas los datos faltantes, los histogramas de las variables y la correlación que tienen algunas variables entre sí.

LS0tCnRpdGxlOiAiRGF0YSBFeHBsb3JlciBTcG90aWZ5IgphdXRob3I6ICJBZ3VzdMOtbiBHw7NtZXogUGVyZXogQTAxNzMyODk3IgpkYXRlOiAiMjAyNC0wOC0yNiIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgIHRoZW1lOiBjZXJ1bGVhbgotLS0KCiFbXShodHRwczovL3VwbG9hZC53aWtpbWVkaWEub3JnL3dpa2lwZWRpYS9jb21tb25zL2MvYzUvU3BvdGlmeV9sb2dvX3dpdGhfY29sb3Jfc3lzdGVtLmdpZikKCgojSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiNpbnN0YWxsLnBhY2thZ2VzKCJEYXRhRXhwbG9yZXIiKQojaW5zdGFsbC5wYWNrYWdlcygibnljZmxpZ2h0czEzIikKbGlicmFyeSgiRGF0YUV4cGxvcmVyIikKbGlicmFyeSgibnljZmxpZ2h0czEzIikKCmBgYAoKI0NyZWFyIGJhc2VzIGRlIGRhdG9zCmBgYHtyfQoKc3BvdGlmeTwtcmVhZC5jc3YoIi9Vc2Vycy9hZ3VzdGluZ29tZXpwZXJlei9EZXNrdG9wL0ludGVsaWdlbmNpYSBBcnRpZmljaWFsL01vc3QgU3RyZWFtZWQgU3BvdGlmeSBTb25ncyAyMDI0LmNzdiIpCgoKYGBgCgojT2J0ZW5lciB1bmEgZ3JhZmljYSBlbiBwYXJ0aWN1bGFyCmBgYHtyfQppbnRyb2R1Y2Uoc3BvdGlmeSkKcGxvdF9pbnRybyhzcG90aWZ5KQpwbG90X21pc3Npbmcoc3BvdGlmeSkKcGxvdF9oaXN0b2dyYW0oc3BvdGlmeSkKcGxvdF9iYXIoc3BvdGlmeSkKcGxvdF9jb3JyZWxhdGlvbihzcG90aWZ5KQoKYGBgCgojQ29uY2x1c2nDs24KCkRhdGEgRXhwbG9yZXIgbm9zIHB1ZWRlIGF5dWRhciBhIGFuYWxpemFyIGxhIGVzdHJ1Y3R1cmEgZGUgbnVlc3Ryb3MgZGF0b3MgZGUgdW5hIG1hbmVyYSBncsOhZmljYSBtw6FzIHLDoXBpZGFtZW50ZSBxdWUgY3VhbHF1aWVyIG90cm8gcGFxdWV0ZSwgZW4gZXN0ZSBjYXNvIGRlIHNwb3RpZnkgcG9kZW1vcyB2ZXIgYSB0cmF2w6lzIGRlIGdyw6FmaWNhcyBsb3MgZGF0b3MgZmFsdGFudGVzLCBsb3MgaGlzdG9ncmFtYXMgZGUgbGFzIHZhcmlhYmxlcyB5IGxhIGNvcnJlbGFjacOzbiBxdWUgdGllbmVuIGFsZ3VuYXMgdmFyaWFibGVzIGVudHJlIHPDrS4KCgoK