R Markdown

spotify <- read.csv("C:\\Users\\eleyva1\\OneDrive - Steelcase Inc\\Documents\\LIT TEC\\Most Streamed Spotify Songs 2024.csv")

Librerias

library("DataExplorer")
## Warning: package 'DataExplorer' was built under R version 4.4.1

Gráficas

introduce(spotify)
##   rows columns discrete_columns continuous_columns all_missing_columns
## 1 4600      29               22                  6                   1
##   total_missing_values complete_rows total_observations memory_usage
## 1                 7941             0             133400      5679272
plot_intro(spotify)

#plot_boxplot(spotify)
plot_missing(spotify)

plot_histogram(spotify)

plot_bar(spotify)
## 22 columns ignored with more than 50 categories.
## Track: 4370 categories
## Album.Name: 4005 categories
## Artist: 2000 categories
## Release.Date: 1562 categories
## ISRC: 4598 categories
## All.Time.Rank: 4577 categories
## Spotify.Streams: 4426 categories
## Spotify.Playlist.Count: 4208 categories
## Spotify.Playlist.Reach: 4479 categories
## YouTube.Views: 4291 categories
## YouTube.Likes: 4284 categories
## TikTok.Posts: 3319 categories
## TikTok.Likes: 3616 categories
## TikTok.Views: 3617 categories
## YouTube.Playlist.Reach: 3459 categories
## AirPlay.Spins: 3268 categories
## SiriusXM.Spins: 690 categories
## Deezer.Playlist.Reach: 3559 categories
## Pandora.Streams: 3492 categories
## Pandora.Track.Stations: 2976 categories
## Soundcloud.Streams: 1266 categories
## Shazam.Counts: 4003 categories

plot_correlation(spotify)
## Warning in dummify(data, maxcat = maxcat): Ignored all discrete features since
## `maxcat` set to 20 categories!
## Warning: Removed 28 rows containing missing values or values outside the scale range
## (`geom_text()`).

Conclusiones

En este análisis exploratorio, encontramos que la base de datos cuenta con más de 4mil registros y 29 variables, al igual que cuenta con una gran cantidad de valores perdidos y 6 variables continuas.

LS0tDQp0aXRsZTogIkRhdGEgRXhwbG9yZXIgLSBFamVtcGxvIFwiTW9zdCBTdHJlYW1lZCBTcG90aWZ5IFNvbmdzIDIwMjRcIiINCmF1dGhvcjogIkVkdWFyZG8gTGV5dmEiDQpkYXRlOiAiMjAyNC0wOC0xMiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiAidW5pdGVkIg0KICAgIGhpZ2hsaWdodDogImVzcHJlc3NvIg0KZWRpdG9yX29wdGlvbnM6IA0KICBjaHVua19vdXRwdXRfdHlwZTogY29uc29sZQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiMjIFIgTWFya2Rvd24NCmBgYHtyfQ0Kc3BvdGlmeSA8LSByZWFkLmNzdigiQzpcXFVzZXJzXFxlbGV5dmExXFxPbmVEcml2ZSAtIFN0ZWVsY2FzZSBJbmNcXERvY3VtZW50c1xcTElUIFRFQ1xcTW9zdCBTdHJlYW1lZCBTcG90aWZ5IFNvbmdzIDIwMjQuY3N2IikNCmBgYA0KDQojIyBMaWJyZXJpYXMNCmBgYHtyfQ0KbGlicmFyeSgiRGF0YUV4cGxvcmVyIikNCmBgYA0KIyMgR3LDoWZpY2FzDQpgYGB7cn0NCmludHJvZHVjZShzcG90aWZ5KQ0KcGxvdF9pbnRybyhzcG90aWZ5KQ0KI3Bsb3RfYm94cGxvdChzcG90aWZ5KQ0KcGxvdF9taXNzaW5nKHNwb3RpZnkpDQpwbG90X2hpc3RvZ3JhbShzcG90aWZ5KQ0KcGxvdF9iYXIoc3BvdGlmeSkNCnBsb3RfY29ycmVsYXRpb24oc3BvdGlmeSkNCmBgYA0KDQojIyBDb25jbHVzaW9uZXMNCkVuIGVzdGUgYW7DoWxpc2lzIGV4cGxvcmF0b3JpbywgZW5jb250cmFtb3MgcXVlIGxhIGJhc2UgZGUgZGF0b3MgY3VlbnRhIGNvbiBtw6FzIGRlIDRtaWwgcmVnaXN0cm9zIHkgMjkgdmFyaWFibGVzLCBhbCBpZ3VhbCBxdWUgY3VlbnRhIGNvbiB1bmEgZ3JhbiBjYW50aWRhZCBkZSB2YWxvcmVzIHBlcmRpZG9zIHkgNiB2YXJpYWJsZXMgY29udGludWFzLg0K