# Creating the dataframe
meta_repu_or <- data.frame(
  Study = c("Richardt, 2024", "Béjot, 2023", "Dicpinigaitis, 2021"),
  ich_c = c(8, 4, 25),
  ich_c_tot = c(85, 354, 180),
  ich_i = c(3, 0, 20),
  ich_i_tot = c(12, 28, 180),
  sich_c = c(1, NA, NA),
  sich_c_tot = c(85, NA, NA),
  sich_i = c(0, NA, NA),
  sich_i_tot = c(12, NA, NA),
  death_c = c(4, 11, NA),
  death_c_tot = c(85, 354, NA),
  death_i = c(1, 0, NA),
  death_i_tot = c(12, 28, NA),
  venous_c = c(NA, 2, 0),
  venous_c_tot = c(NA, 354, 180),
  venous_i = c(NA, 0, 30),
  venous_i_tot = c(NA, 28, 180),
  mrs_c = c(64, NA, 130),
  mrs_c_tot = c(85, NA, 180),
  mrs_i = c(8, NA, 90),
  mrs_i_tot = c(12, NA, 180)
)

# Display the dataframe
print(meta_repu_or)
##                 Study ich_c ich_c_tot ich_i ich_i_tot sich_c sich_c_tot sich_i
## 1      Richardt, 2024     8        85     3        12      1         85      0
## 2         Béjot, 2023     4       354     0        28     NA         NA     NA
## 3 Dicpinigaitis, 2021    25       180    20       180     NA         NA     NA
##   sich_i_tot death_c death_c_tot death_i death_i_tot venous_c venous_c_tot
## 1         12       4          85       1          12       NA           NA
## 2         NA      11         354       0          28        2          354
## 3         NA      NA          NA      NA          NA        0          180
##   venous_i venous_i_tot mrs_c mrs_c_tot mrs_i mrs_i_tot
## 1       NA           NA    64        85     8        12
## 2        0           28    NA        NA    NA        NA
## 3       30          180   130       180    90       180
library(meta)
## Loading required package: metadat
## Loading 'meta' package (version 7.0-0).
## Type 'help(meta)' for a brief overview.
## Readers of 'Meta-Analysis with R (Use R!)' should install
## older version of 'meta' package: https://tinyurl.com/dt4y5drs
# Meta-analysis of odds ratios
meta_analysis_ich <- metabin(
  event.e = meta_repu_or$ich_i,     # Number of events in intervention group (ich_i)
  n.e = meta_repu_or$ich_i_tot,     # Total number in intervention group (ich_i_tot)
  event.c = meta_repu_or$ich_c,     # Number of events in control group (ich_c)
  n.c = meta_repu_or$ich_c_tot,     # Total number in control group (ich_c_tot)
  data = meta_repu_or,
  studlab = paste(meta_repu_or$Study),
  sm = "OR",                        # Specify summary measure as Odds Ratio
  method.tau = "DL",                # DerSimonian-Laird estimator for tau^2
  comb.fixed = FALSE,               # Random effects model
  comb.random = TRUE,               # Include random effects
  prediction = FALSE                # No prediction interval by default
)

# Summary of the meta-analysis
summary(meta_analysis_ich)
##                         OR            95%-CI %W(random)
## Richardt, 2024      3.2083 [0.7189; 14.3183]       27.7
## Béjot, 2023         1.3665 [0.0718; 26.0186]        9.4
## Dicpinigaitis, 2021 0.7750 [0.4135;  1.4524]       62.9
## 
## Number of studies: k = 3
## Number of observations: o = 839 (o.e = 220, o.c = 619)
## Number of events: e = 60
## 
##                          OR           95%-CI    z p-value
## Random effects model 1.2124 [0.4657; 3.1566] 0.39  0.6932
## 
## Quantifying heterogeneity:
##  tau^2 = 0.2765; tau = 0.5258; I^2 = 33.6% [0.0%; 78.1%]; H = 1.23 [1.00; 2.14]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  3.01    2  0.2217
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
## - Continuity correction of 0.5 in studies with zero cell frequencies

META-ANALYSIS OF ODDS RATIOS OF ICH (OR>1 favors intervention)

# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_ich, layout = "JAMA")


Insuficient data for the sich


META-ANALYSIS OF DEATH

# Load the necessary library
library(meta)

# Filter out rows with NA values in relevant columns
meta_repu_or_filtered <- subset(meta_repu_or, !is.na(death_c) & !is.na(death_c_tot) & !is.na(death_i) & !is.na(death_i_tot))

# Meta-analysis of odds ratios
meta_analysis_death <- metabin(
  event.e = meta_repu_or_filtered$death_i,    # Number of events in intervention group (death_i)
  n.e = meta_repu_or_filtered$death_i_tot,    # Total number in intervention group (death_i_tot)
  event.c = meta_repu_or_filtered$death_c,    # Number of events in control group (death_c)
  n.c = meta_repu_or_filtered$death_c_tot,    # Total number in control group (death_c_tot)
  data = meta_repu_or_filtered,
  studlab = paste(meta_repu_or_filtered$Study),
  sm = "OR",                                  # Specify summary measure as Odds Ratio
  method.tau = "DL",                          # DerSimonian-Laird estimator for tau^2
  comb.fixed = FALSE,                         # Random effects model
  comb.random = TRUE,                         # Include random effects
  prediction = FALSE                          # No prediction interval by default
)

# Summary of the meta-analysis
summary(meta_analysis_death)
##                    OR            95%-CI %W(random)
## Richardt, 2024 1.8409 [0.1883; 17.9983]       61.1
## Béjot, 2023    0.5240 [0.0301;  9.1237]       38.9
## 
## Number of studies: k = 2
## Number of observations: o = 479 (o.e = 40, o.c = 439)
## Number of events: e = 16
## 
##                          OR           95%-CI    z p-value
## Random effects model 1.1291 [0.1900; 6.7095] 0.13  0.8938
## 
## Quantifying heterogeneity:
##  tau^2 = 0; tau = 0; I^2 = 0.0%; H = 1.00
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  0.48    1  0.4894
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
## - Continuity correction of 0.5 in studies with zero cell frequencies
# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_death, layout = "JAMA")

META-ANALYSIS Venous thromboembolism

# Load the necessary library
library(meta)

# Filter out rows with NA values in relevant columns
meta_repu_or_filtered_venous <- subset(meta_repu_or, !is.na(venous_c) & !is.na(venous_c_tot) & !is.na(venous_i) & !is.na(venous_i_tot))

# Meta-analysis of odds ratios
meta_analysis_venous <- metabin(
  event.e = meta_repu_or_filtered_venous$venous_i,    # Number of events in intervention group (venous_i)
  n.e = meta_repu_or_filtered_venous$venous_i_tot,    # Total number in intervention group (venous_i_tot)
  event.c = meta_repu_or_filtered_venous$venous_c,    # Number of events in control group (venous_c)
  n.c = meta_repu_or_filtered_venous$venous_c_tot,    # Total number in control group (venous_c_tot)
  data = meta_repu_or_filtered_venous,
  studlab = paste(meta_repu_or_filtered_venous$Study),
  sm = "OR",                                          # Specify summary measure as Odds Ratio
  method.tau = "DL",                                  # DerSimonian-Laird estimator for tau^2
  comb.fixed = FALSE,                                 # Random effects model
  comb.random = TRUE,                                 # Include random effects
  prediction = FALSE                                  # No prediction interval by default
)

# Summary of the meta-analysis
summary(meta_analysis_venous)
##                          OR              95%-CI %W(random)
## Béjot, 2023          2.4737 [0.1160;   52.7713]       48.7
## Dicpinigaitis, 2021 73.1595 [4.4364; 1206.4520]       51.3
## 
## Number of studies: k = 2
## Number of observations: o = 742 (o.e = 208, o.c = 534)
## Number of events: e = 32
## 
##                           OR             95%-CI    z p-value
## Random effects model 14.0625 [0.3161; 625.6522] 1.37  0.1722
## 
## Quantifying heterogeneity:
##  tau^2 = 5.2630; tau = 2.2941; I^2 = 70.1% [0.0%; 93.3%]; H = 1.83 [1.00; 3.86]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  3.35    1  0.0673
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
## - Continuity correction of 0.5 in studies with zero cell frequencies
# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_venous, layout = "JAMA")

META-ANALYSIS OF Good functional outcome (mRS 0–2) at 3 months

# Load the necessary library
library(meta)

# Filter out rows with NA values in relevant columns
meta_repu_or_filtered_mrs <- subset(meta_repu_or, !is.na(mrs_c) & !is.na(mrs_c_tot) & !is.na(mrs_i) & !is.na(mrs_i_tot))

# Meta-analysis of odds ratios
meta_analysis_mrs <- metabin(
  event.e = meta_repu_or_filtered_mrs$mrs_i,    # Number of events in intervention group (mrs_i)
  n.e = meta_repu_or_filtered_mrs$mrs_i_tot,    # Total number in intervention group (mrs_i_tot)
  event.c = meta_repu_or_filtered_mrs$mrs_c,    # Number of events in control group (mrs_c)
  n.c = meta_repu_or_filtered_mrs$mrs_c_tot,    # Total number in control group (mrs_c_tot)
  data = meta_repu_or_filtered_mrs,
  studlab = paste(meta_repu_or_filtered_mrs$Study),
  sm = "OR",                                    # Specify summary measure as Odds Ratio
  method.tau = "DL",                            # DerSimonian-Laird estimator for tau^2
  comb.fixed = FALSE,                           # Random effects model
  comb.random = TRUE,                           # Include random effects
  prediction = FALSE                            # No prediction interval by default
)

# Summary of the meta-analysis
summary(meta_analysis_mrs)
##                         OR           95%-CI %W(random)
## Richardt, 2024      0.6562 [0.1793; 2.4020]       10.2
## Dicpinigaitis, 2021 0.3846 [0.2482; 0.5959]       89.8
## 
## Number of studies: k = 2
## Number of observations: o = 457 (o.e = 192, o.c = 265)
## Number of events: e = 292
## 
##                          OR           95%-CI     z  p-value
## Random effects model 0.4062 [0.2683; 0.6151] -4.26 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 0; tau = 0; I^2 = 0.0%; H = 1.00
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  0.58    1  0.4444
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_mrs, layout = "JAMA")

Look at the paper Dicpinigatis, it looks weird that the mrs is better in the control. Check this in the data extraction form

Now let’s do the meta-analysis of proportions for all the outcomes with analysis of subgroup

# Creating the dataframe
meta_repu_details <- data.frame(
  Study = c("Richardt, 2024 i", "Richardt, 2024 c", "Béjot, 2023 i", "Béjot, 2023 c", "Dicpinigaitis, 2021 i", "Dicpinigaitis, 2021 c", "Leffert, 2016", "Limaye, 2019", "Murugappan, 2006"),
  sample_ich = c(12, 85, 28, 354, 180, 180, 7, 8, 8),
  ich = c(3, 8, 0, 4, 20, 25, 1, 1, 1),
  ich_sub = c("Intervention", "Control", "Intervention", "Control", "Intervention", "Control", "Intervention", "Intervention", "Intervention"),
  sample_sich = c(12, 85, 28, 354, NA, NA, 40, 7, 8),
  sich = c(0, 4, 0, 11, NA, NA, 3, 0, 0),
  sich_sub = c("Intervention", "Control", "Intervention", "Control", NA, NA, "Intervention", "Intervention", "Intervention"),
  Sample_death = c(12, 85, 28, 354, NA, 338, NA, NA, NA),
  death = c(1, 4, 0, 11, NA, 7, NA, NA, NA),
  death_sub = c("Intervention", "Control", "Intervention", "Control", NA, "Intervention", NA, NA, NA),
  sample_mrs = c(12, 85, NA, NA, 180, 180, 338, 7, NA),
  mrs = c(8, 3, NA, NA, 90, 130, 221, 7, NA),
  mrs_sub = c("Intervention", "Control", NA, NA, "Intervention", "Control", "Intervention", "Intervention", NA)
)

# Display the dataframe
print(meta_repu_details)
##                   Study sample_ich ich      ich_sub sample_sich sich
## 1      Richardt, 2024 i         12   3 Intervention          12    0
## 2      Richardt, 2024 c         85   8      Control          85    4
## 3         Béjot, 2023 i         28   0 Intervention          28    0
## 4         Béjot, 2023 c        354   4      Control         354   11
## 5 Dicpinigaitis, 2021 i        180  20 Intervention          NA   NA
## 6 Dicpinigaitis, 2021 c        180  25      Control          NA   NA
## 7         Leffert, 2016          7   1 Intervention          40    3
## 8          Limaye, 2019          8   1 Intervention           7    0
## 9      Murugappan, 2006          8   1 Intervention           8    0
##       sich_sub Sample_death death    death_sub sample_mrs mrs      mrs_sub
## 1 Intervention           12     1 Intervention         12   8 Intervention
## 2      Control           85     4      Control         85   3      Control
## 3 Intervention           28     0 Intervention         NA  NA         <NA>
## 4      Control          354    11      Control         NA  NA         <NA>
## 5         <NA>           NA    NA         <NA>        180  90 Intervention
## 6         <NA>          338     7 Intervention        180 130      Control
## 7 Intervention           NA    NA         <NA>        338 221 Intervention
## 8 Intervention           NA    NA         <NA>          7   7 Intervention
## 9 Intervention           NA    NA         <NA>         NA  NA         <NA>
# Load the necessary library
library(meta)

# Calculate the pooled proportion using metaprop function
meta_analysis_ich_2 <- metaprop(
  event = meta_repu_details$ich,             # Number of events (ich)
  n = meta_repu_details$sample_ich,          # Total number (sample_ich)
  data = meta_repu_details,                  # Data source
  sm = "PLO",                                # Specify summary measure as Proportion (Logit transformed)
  method.tau = "DL",                         # DerSimonian-Laird estimator for tau^2
  prediction = FALSE,                        # No prediction interval by default
  comb.fixed = FALSE,                        # Random effects model
  comb.random = TRUE,                        # Include random effects
  studlab = meta_repu_details$Study,         # Label each study by its name
  byvar = meta_repu_details$ich_sub          # Subgroup analysis by ich_sub
)

# Summary of the meta-analysis
summary(meta_analysis_ich_2)
##                       proportion           95%-CI %W(random)      ich_sub
## Richardt, 2024 i          0.2500 [0.0549; 0.5719]       10.8 Intervention
## Richardt, 2024 c          0.0941 [0.0415; 0.1771]       16.0      Control
## Béjot, 2023 i             0.0000 [0.0000; 0.1234]        4.0 Intervention
## Béjot, 2023 c             0.0113 [0.0031; 0.0287]       13.6      Control
## Dicpinigaitis, 2021 i     0.1111 [0.0692; 0.1664]       18.4 Intervention
## Dicpinigaitis, 2021 c     0.1389 [0.0919; 0.1982]       18.7      Control
## Leffert, 2016             0.1429 [0.0036; 0.5787]        6.1 Intervention
## Limaye, 2019              0.1250 [0.0032; 0.5265]        6.2 Intervention
## Murugappan, 2006          0.1250 [0.0032; 0.5265]        6.2 Intervention
## 
## Number of studies: k = 9
## Number of observations: o = 862
## Number of events: e = 63
## 
##                      proportion           95%-CI
## Random effects model     0.0891 [0.0497; 0.1546]
## 
## Quantifying heterogeneity:
##  tau^2 = 0.4984 [0.0274; 3.6248]; tau = 0.7060 [0.1657; 1.9039]
##  I^2 = 71.6% [44.1%; 85.6%]; H = 1.88 [1.34; 2.64]
## 
## Test of heterogeneity:
##      Q d.f. p-value
##  28.21    8  0.0004
## 
## Results for subgroups (random effects model):
##                          k proportion           95%-CI  tau^2    tau     Q
## ich_sub = Intervention   6     0.1187 [0.0822; 0.1683]      0      0  4.03
## ich_sub = Control        3     0.0579 [0.0156; 0.1927] 1.2989 1.1397 23.42
##                          I^2
## ich_sub = Intervention  0.0%
## ich_sub = Control      91.5%
## 
## Test for subgroup differences (random effects model):
##                   Q d.f. p-value
## Between groups 1.18    1  0.2777
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Jackson method for confidence interval of tau^2 and tau
## - Logit transformation
## - Clopper-Pearson confidence interval for individual studies
## - Continuity correction of 0.5 in studies with zero cell frequencies

META ANALYSIS OF PROP for Any ICH

# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_ich_2, layout = "JAMA")

# Load the necessary library
library(meta)

# Filter out rows with NA values in sich_sub and sich/sample_sich columns
meta_repu_details_filtered_sich <- subset(meta_repu_details, !is.na(sich_sub) & !is.na(sich) & !is.na(sample_sich))

# Calculate the pooled proportion using metaprop function
meta_analysis_sich_2 <- metaprop(
  event = meta_repu_details_filtered_sich$sich,        # Number of events (sich)
  n = meta_repu_details_filtered_sich$sample_sich,     # Total number (sample_sich)
  data = meta_repu_details_filtered_sich,              # Data source
  sm = "PLO",                                          # Specify summary measure as Proportion (Logit transformed)
  method.tau = "DL",                                   # DerSimonian-Laird estimator for tau^2
  prediction = FALSE,                                  # No prediction interval by default
  comb.fixed = FALSE,                                  # Random effects model
  comb.random = TRUE,                                  # Include random effects
  studlab = meta_repu_details_filtered_sich$Study,     # Label each study by its name
  byvar = meta_repu_details_filtered_sich$sich_sub     # Subgroup analysis by sich_sub
)

# Summary of the meta-analysis
summary(meta_analysis_sich_2)
##                  proportion           95%-CI %W(random)     sich_sub
## Richardt, 2024 i     0.0000 [0.0000; 0.2646]        2.5 Intervention
## Richardt, 2024 c     0.0471 [0.0130; 0.1161]       19.9      Control
## Béjot, 2023 i        0.0000 [0.0000; 0.1234]        2.6 Intervention
## Béjot, 2023 c        0.0311 [0.0156; 0.0549]       55.6      Control
## Leffert, 2016        0.0750 [0.0157; 0.2039]       14.5 Intervention
## Limaye, 2019         0.0000 [0.0000; 0.4096]        2.4 Intervention
## Murugappan, 2006     0.0000 [0.0000; 0.3694]        2.5 Intervention
## 
## Number of studies: k = 7
## Number of observations: o = 534
## Number of events: e = 18
## 
##                      proportion           95%-CI
## Random effects model     0.0393 [0.0255; 0.0602]
## 
## Quantifying heterogeneity:
##  tau^2 = 0 [0.0000; 0.2769]; tau = 0 [0.0000; 0.5263]
##  I^2 = 0.0% [0.0%; 70.8%]; H = 1.00 [1.00; 1.85]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  2.59    6  0.8580
## 
## Results for subgroups (random effects model):
##                           k proportion           95%-CI tau^2 tau    Q  I^2
## sich_sub = Intervention   5     0.0575 [0.0241; 0.1310]     0   0 1.08 0.0%
## sich_sub = Control        2     0.0347 [0.0210; 0.0567]     0   0 0.52 0.0%
## 
## Test for subgroup differences (random effects model):
##                   Q d.f. p-value
## Between groups 0.99    1  0.3195
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Jackson method for confidence interval of tau^2 and tau
## - Logit transformation
## - Clopper-Pearson confidence interval for individual studies
## - Continuity correction of 0.5 in studies with zero cell frequencies

META ANALYSIS OF PROP for sICH

# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_sich_2, layout = "JAMA")

Death

# Load the necessary library
library(meta)

# Filter out rows with NA values in death_sub and death/sample_death columns
meta_repu_details_filtered_death <- subset(meta_repu_details, !is.na(death_sub) & !is.na(death) & !is.na(Sample_death))

# Calculate the pooled proportion using metaprop function
meta_analysis_death_2 <- metaprop(
  event = meta_repu_details_filtered_death$death,         # Number of events (death)
  n = meta_repu_details_filtered_death$Sample_death,      # Total number (Sample_death)
  data = meta_repu_details_filtered_death,                # Data source
  sm = "PLO",                                             # Specify summary measure as Proportion (Logit transformed)
  method.tau = "DL",                                      # DerSimonian-Laird estimator for tau^2
  prediction = FALSE,                                     # No prediction interval by default
  comb.fixed = FALSE,                                     # Random effects model
  comb.random = TRUE,                                     # Include random effects
  studlab = meta_repu_details_filtered_death$Study,       # Label each study by its name
  byvar = meta_repu_details_filtered_death$death_sub      # Subgroup analysis by death_sub
)

# Summary of the meta-analysis
summary(meta_analysis_death_2)
##                       proportion           95%-CI %W(random)    death_sub
## Richardt, 2024 i          0.0833 [0.0021; 0.3848]        4.0 Intervention
## Richardt, 2024 c          0.0471 [0.0130; 0.1161]       16.8      Control
## Béjot, 2023 i             0.0000 [0.0000; 0.1234]        2.2 Intervention
## Béjot, 2023 c             0.0311 [0.0156; 0.0549]       46.9      Control
## Dicpinigaitis, 2021 c     0.0207 [0.0084; 0.0422]       30.2 Intervention
## 
## Number of studies: k = 5
## Number of observations: o = 817
## Number of events: e = 23
## 
##                      proportion           95%-CI
## Random effects model     0.0304 [0.0203; 0.0451]
## 
## Quantifying heterogeneity:
##  tau^2 = 0 [0.0000; 2.1150]; tau = 0 [0.0000; 1.4543]
##  I^2 = 0.0% [0.0%; 79.2%]; H = 1.00 [1.00; 2.19]
## 
## Test of heterogeneity:
##     Q d.f. p-value
##  3.06    4  0.5479
## 
## Results for subgroups (random effects model):
##                            k proportion           95%-CI tau^2 tau    Q  I^2
## death_sub = Intervention   3     0.0240 [0.0123; 0.0464]     0   0 1.78 0.0%
## death_sub = Control        2     0.0347 [0.0210; 0.0567]     0   0 0.52 0.0%
## 
## Test for subgroup differences (random effects model):
##                   Q d.f. p-value
## Between groups 0.76    1  0.3842
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Jackson method for confidence interval of tau^2 and tau
## - Logit transformation
## - Clopper-Pearson confidence interval for individual studies
## - Continuity correction of 0.5 in studies with zero cell frequencies
# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_death_2, layout = "JAMA")

Proportions Good functional outcome (mRS 0–2) at 3 months

# Load the necessary library
library(meta)

# Filter out rows with NA values in mrs_sub and mrs/sample_mrs columns
meta_repu_details_filtered_mrs <- subset(meta_repu_details, !is.na(mrs_sub) & !is.na(mrs) & !is.na(sample_mrs))

# Calculate the pooled proportion using metaprop function
meta_analysis_mrs_3 <- metaprop(
  event = meta_repu_details_filtered_mrs$mrs,             # Number of events (mrs)
  n = meta_repu_details_filtered_mrs$sample_mrs,          # Total number (sample_mrs)
  data = meta_repu_details_filtered_mrs,                  # Data source
  sm = "PLO",                                             # Specify summary measure as Proportion (Logit transformed)
  method.tau = "DL",                                      # DerSimonian-Laird estimator for tau^2
  prediction = FALSE,                                     # No prediction interval by default
  comb.fixed = FALSE,                                     # Random effects model
  comb.random = TRUE,                                     # Include random effects
  studlab = meta_repu_details_filtered_mrs$Study,         # Label each study by its name
  byvar = meta_repu_details_filtered_mrs$mrs_sub          # Subgroup analysis by mrs_sub
)

# Summary of the meta-analysis
summary(meta_analysis_mrs_3)
##                       proportion           95%-CI %W(random)      mrs_sub
## Richardt, 2024 i          0.6667 [0.3489; 0.9008]       13.8 Intervention
## Richardt, 2024 c          0.0353 [0.0073; 0.0997]       14.3      Control
## Dicpinigaitis, 2021 i     0.5000 [0.4247; 0.5753]       22.3 Intervention
## Dicpinigaitis, 2021 c     0.7222 [0.6507; 0.7863]       22.1      Control
## Leffert, 2016             0.6538 [0.6005; 0.7045]       22.7 Intervention
## Limaye, 2019              1.0000 [0.5904; 1.0000]        4.8 Intervention
## 
## Number of studies: k = 6
## Number of observations: o = 802
## Number of events: e = 459
## 
##                      proportion           95%-CI
## Random effects model     0.5270 [0.3558; 0.6921]
## 
## Quantifying heterogeneity:
##  tau^2 = 0.5524 [0.4385; 12.3038]; tau = 0.7433 [0.6622; 3.5077]
##  I^2 = 92.2% [85.8%; 95.7%]; H = 3.59 [2.66; 4.84]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  64.35    5 < 0.0001
## 
## Results for subgroups (random effects model):
##                          k proportion           95%-CI  tau^2    tau     Q
## mrs_sub = Intervention   4     0.6138 [0.4759; 0.7355] 0.1818 0.4264 14.16
## mrs_sub = Control        2     0.2425 [0.0049; 0.9543] 8.9026 2.9837 48.71
##                          I^2
## mrs_sub = Intervention 78.8%
## mrs_sub = Control      97.9%
## 
## Test for subgroup differences (random effects model):
##                   Q d.f. p-value
## Between groups 0.56    1  0.4563
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Jackson method for confidence interval of tau^2 and tau
## - Logit transformation
## - Clopper-Pearson confidence interval for individual studies
## - Continuity correction of 0.5 in studies with zero cell frequencies
# To visualize the results, you can plot a forest plot
meta::forest(meta_analysis_mrs_3, layout = "JAMA")

As you can see, Dicpinigaitis doesn’t make sense. Please check that! :)