Cáncer de Mama

1. Importar la base de datos

# file.choose()
cancer_de_mama <- read.csv("C:\\Users\\sebas\\OneDrive\\Escritorio\\Inteligencia de Negocios\\Modulo 2\\16 08 2024\\cancer_de_mama.csv")

2. Entender la base de datos

summary(cancer_de_mama)
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave_points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave_points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave_points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750
# install.packages("dplyr")
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
count(cancer_de_mama,diagnosis, sort=TRUE)
##   diagnosis   n
## 1         B 357
## 2         M 212

3. Crear el árbol de decisión

# install.packages("rpart")
library(rpart)
# install.packages("rpart.plot")
library(rpart.plot)

arbol <- rpart(formula = diagnosis ~ ., data=cancer_de_mama)
arbol
## n= 569 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 569 212 B (0.62741652 0.37258348)  
##    2) radius_worst< 16.795 379  33 B (0.91292876 0.08707124)  
##      4) concave_points_worst< 0.1358 333   5 B (0.98498498 0.01501502) *
##      5) concave_points_worst>=0.1358 46  18 M (0.39130435 0.60869565)  
##       10) texture_worst< 25.67 19   4 B (0.78947368 0.21052632) *
##       11) texture_worst>=25.67 27   3 M (0.11111111 0.88888889) *
##    3) radius_worst>=16.795 190  11 M (0.05789474 0.94210526) *
rpart.plot(arbol)

prp(arbol, extra = 7)

LS0tDQp0aXRsZTogIkFyYm9sIGRlIGRlY2lzaW9uZXMgQ2FuY2VyIGRlIE1hbWEiDQphdXRob3I6ICJQYWJsbyBTZWJhc3RpYW4iDQpkYXRlOiAiMjAyNC0wOC0xMiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiAic3BhY2VsYWIiDQogICAgaGlnaGxpZ2h0OiAia2F0ZSINCi0tLQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogcGluazsiPkPDoW5jZXIgZGUgTWFtYTwvc3Bhbj4NCg0KIVtdKEM6XFxVc2Vyc1xcc2ViYXNcXE9uZURyaXZlXFxFc2NyaXRvcmlvXFxJbnRlbGlnZW5jaWEgZGUgTmVnb2Npb3NcXE1vZHVsbyAyXFwxNiAwOCAyMDI0XFxjYW5jZXIgZGUgbWFtYWEuanBlZykNCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwaW5rOyI+MS4gSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCg0KYGBge3J9DQojIGZpbGUuY2hvb3NlKCkNCmNhbmNlcl9kZV9tYW1hIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXHNlYmFzXFxPbmVEcml2ZVxcRXNjcml0b3Jpb1xcSW50ZWxpZ2VuY2lhIGRlIE5lZ29jaW9zXFxNb2R1bG8gMlxcMTYgMDggMjAyNFxcY2FuY2VyX2RlX21hbWEuY3N2IikNCmBgYA0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwaW5rOyI+Mi4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCg0KYGBge3J9DQpzdW1tYXJ5KGNhbmNlcl9kZV9tYW1hKQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJkcGx5ciIpDQpsaWJyYXJ5KGRwbHlyKQ0KY291bnQoY2FuY2VyX2RlX21hbWEsZGlhZ25vc2lzLCBzb3J0PVRSVUUpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwaW5rOyI+My4gQ3JlYXIgZWwgw6FyYm9sIGRlIGRlY2lzacOzbjwvc3Bhbj4NCmBgYHtyfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJycGFydCIpDQpsaWJyYXJ5KHJwYXJ0KQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJycGFydC5wbG90IikNCmxpYnJhcnkocnBhcnQucGxvdCkNCg0KYXJib2wgPC0gcnBhcnQoZm9ybXVsYSA9IGRpYWdub3NpcyB+IC4sIGRhdGE9Y2FuY2VyX2RlX21hbWEpDQphcmJvbA0KcnBhcnQucGxvdChhcmJvbCkNCg0KcHJwKGFyYm9sLCBleHRyYSA9IDcpDQpgYGANCg0KDQoNCg0KDQoNCg0KDQo=