This assignment is a detailed approach based on the greedy layer-wise unsupervised pretraining protocol as described in section 15.1 of “Deep Learning” by Goodfellow et al.
Here’s a simplified Python example demonstrating greedy layer-wise
pretraining using autoencoders. This program uses
scikit-learn for MLP (Multi-layer Perceptron) to represent
the autoencoders.
import numpy as np
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
class Autoencoder:
def __init__(self, input_dim, hidden_dim):
self.model = MLPRegressor(hidden_layer_sizes=(hidden_dim,), max_iter=1, warm_start=True)
self.input_dim = input_dim
self.hidden_dim = hidden_dim
def train(self, X):
self.model.fit(X, X) # Train to reconstruct the input data
def transform(self, X):
return self.model.predict(X)
def greedy_layer_wise_pretraining(X, layer_dims):
layers = []
current_input = X
for hidden_dim in layer_dims:
autoencoder = Autoencoder(input_dim=current_input.shape[1], hidden_dim=hidden_dim)
autoencoder.train(current_input)
layers.append(autoencoder)
current_input = autoencoder.transform(current_input)
return layers
def supervised_fine_tuning(layers, X_train, y_train):
class StackedAutoencoder:
def __init__(self, layers):
self.layers = layers
self.supervised_model = None
def forward(self, X):
for layer in self.layers:
X = layer.transform(X)
return X
def train(self, X, y):
X_transformed = self.forward(X)
self.supervised_model = MLPRegressor(hidden_layer_sizes=(50,), max_iter=100)
self.supervised_model.fit(X_transformed, y)
stacked_autoencoder = StackedAutoencoder(layers)
stacked_autoencoder.train(X_train, y_train)
return stacked_autoencoder
# Example usage
np.random.seed(0) # For reproducibility
X_train = np.random.rand(100, 50) # Example training data with 50 features
y_train = np.random.rand(100, 1) # Example labels
layer_dims = [30, 20, 10] # Dimensions for hidden layers
layers = greedy_layer_wise_pretraining(X_train, layer_dims)
stacked_autoencoder = supervised_fine_tuning(layers, X_train, y_train)
This example uses autoencoders for simplicity. In practice, you might use other models like RBMs, and the specific implementation details can vary depending on the architecture used.
15.1 Gready Layer-Wise Unsupervised Pretraining — dl 0.0.1 documentation. (2022). Readthedocs.io. https://deep-learning-study-note.readthedocs.io/en/latest/Part%203%20(Deep%20Learning%20Research)/15%20Representation%20Learning/15.1%20Gready%20Layer%20Wise%20Unsupervised%20Pretraining.html
Huang, H. (2018, February 20). Representation Learning (1) — Greedy Layer-Wise Unsupervised Pretraining. Medium; Medium. https://medium.com/@andrehuang0/representation-learning-1-greedy-layer-wise-unsupervised-pretraining-de483ead2d0a