## 
##   1 
## 161
## 
## Call:
## lm(formula = pe_strp ~ case_famcontrol, data = df.pe.a.temp1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.48597 -0.43290  0.05673  0.45314  1.52417 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  0.4834     0.1355   3.567  0.00083 ***
## case_famcontrolMutationPos  -0.1528     0.1779  -0.859  0.39480    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.621 on 48 degrees of freedom
##   (111 observations deleted due to missingness)
## Multiple R-squared:  0.01513,    Adjusted R-squared:  -0.00539 
## F-statistic: 0.7373 on 1 and 48 DF,  p-value: 0.3948
## 
## Call:
## lm(formula = pe_humi ~ case_famcontrol, data = df.pe.a.temp1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2966 -0.2837 -0.0116  0.3045  1.4825 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                  0.3252     0.1214   2.679  0.00997 **
## case_famcontrolMutationPos  -0.1768     0.1572  -1.124  0.26619   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5562 on 50 degrees of freedom
##   (109 observations deleted due to missingness)
## Multiple R-squared:  0.02466,    Adjusted R-squared:  0.005158 
## F-statistic: 1.264 on 1 and 50 DF,  p-value: 0.2662
## 
## Call:
## lm(formula = pe_nback ~ case_famcontrol, data = df.pe.a.temp1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5139 -0.4725 -0.1589  0.4095  3.1468 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                  0.2176     0.2492   0.873    0.387
## case_famcontrolMutationPos   0.1692     0.3272   0.517    0.607
## 
## Residual standard error: 1.142 on 48 degrees of freedom
##   (111 observations deleted due to missingness)
## Multiple R-squared:  0.005543,   Adjusted R-squared:  -0.01517 
## F-statistic: 0.2675 on 1 and 48 DF,  p-value: 0.6074
## 
## Call:
## lm(formula = pe_flk ~ case_famcontrol, data = df.pe.a.temp1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.59019 -0.12926 -0.02336  0.12686  0.78070 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 0.21982    0.06178   3.558 0.000829 ***
## case_famcontrolMutationPos -0.07368    0.08002  -0.921 0.361558    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2831 on 50 degrees of freedom
##   (109 observations deleted due to missingness)
## Multiple R-squared:  0.01668,    Adjusted R-squared:  -0.002991 
## F-statistic: 0.8479 on 1 and 50 DF,  p-value: 0.3616

1a: PE and CDR+NACC-FTLD sum of boxes at baseline, full sample

a. Full Sample

Regressions in full sample. FTLD SOB ~ PE for each task. Seperate models
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## [1] 139
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6924 -1.0548 -0.8772 -0.1082 11.2526 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.2093     0.2331   5.187 8.12e-07 ***
## target       -0.4181     0.2949  -1.418    0.159    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.153 on 128 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.01546,    Adjusted R-squared:  0.00777 
## F-statistic:  2.01 on 1 and 128 DF,  p-value: 0.1587
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## [1] 198
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.089 -2.164 -1.659  1.603 14.180 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.9351     0.2820   6.861 1.05e-10 ***
## target        1.5153     0.6593   2.298   0.0227 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.275 on 181 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.02836,    Adjusted R-squared:  0.02299 
## F-statistic: 5.282 on 1 and 181 DF,  p-value: 0.02269
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## [1] 157
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.116 -2.031 -1.651  1.024 14.619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.92236    0.28050   6.853 1.92e-10 ***
## target       0.02709    0.01309   2.069   0.0404 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.207 on 145 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.02867,    Adjusted R-squared:  0.02197 
## F-statistic: 4.279 on 1 and 145 DF,  p-value: 0.04035
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## [1] 137
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4853 -1.1230 -0.7836  0.3150 11.2764 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.1230     0.1934   5.807 4.87e-08 ***
## target       -0.4356     0.1704  -2.556   0.0118 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.132 on 126 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.0493, Adjusted R-squared:  0.04175 
## F-statistic: 6.534 on 1 and 126 DF,  p-value: 0.01177
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## [1] 198
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.995 -2.240 -1.619  1.450 13.976 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.4076     0.2672   9.009  2.9e-16 ***
## target       -0.5969     0.4609  -1.295    0.197    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.307 on 181 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.009179,   Adjusted R-squared:  0.003704 
## F-statistic: 1.677 on 1 and 181 DF,  p-value: 0.197
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

b. PE and CDR+NACC-FTLD sum of boxes at baseline with covari [age, education]

FTLD SOB ~ PE +age + education
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4092 -1.1211 -0.6194  0.1067 11.0707 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -1.416372   1.620854  -0.874   0.3839  
## target       -0.386601   0.293360  -1.318   0.1899  
## baseline_age  0.041748   0.019214   2.173   0.0317 *
## educ.demo     0.008656   0.075083   0.115   0.9084  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.129 on 126 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.05163,    Adjusted R-squared:  0.02905 
## F-statistic: 2.287 on 3 and 126 DF,  p-value: 0.08188
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1379 -2.1919 -0.8157  1.4402 13.8510 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.80335    2.02353  -1.385 0.167661    
## target        1.29176    0.65119   1.984 0.048820 *  
## baseline_age  0.09196    0.02395   3.839 0.000171 ***
## educ.demo    -0.04976    0.09668  -0.515 0.607388    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.165 on 179 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.1023, Adjusted R-squared:  0.08724 
## F-statistic: 6.798 on 3 and 179 DF,  p-value: 0.0002295
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4227 -1.9465 -0.8388  1.1969 14.6534 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.42595    2.12492  -1.142 0.255500    
## target        0.02294    0.01282   1.789 0.075726 .  
## baseline_age  0.08780    0.02539   3.459 0.000716 ***
## educ.demo    -0.05930    0.10678  -0.555 0.579560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.102 on 143 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.1037, Adjusted R-squared:  0.08486 
## F-statistic: 5.513 on 3 and 143 DF,  p-value: 0.001304
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1953 -1.1237 -0.6106  0.4160 11.0972 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -0.94486    1.63680  -0.577   0.5648  
## target       -0.40027    0.17055  -2.347   0.0205 *
## baseline_age  0.03852    0.01922   2.004   0.0472 *
## educ.demo    -0.01312    0.07572  -0.173   0.8627  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.115 on 124 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.07914,    Adjusted R-squared:  0.05686 
## F-statistic: 3.552 on 3 and 124 DF,  p-value: 0.01645
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3698 -1.9593 -0.9768  1.2988 14.1849 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.37468    2.01010  -1.181    0.239    
## target       -0.70834    0.44594  -1.588    0.114    
## baseline_age  0.09884    0.02400   4.118 5.83e-05 ***
## educ.demo    -0.07414    0.09554  -0.776    0.439    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.178 on 179 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.0953, Adjusted R-squared:  0.08014 
## F-statistic: 6.285 on 3 and 179 DF,  p-value: 0.0004448
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

c. PE and CDR+NACC-FTLD sum of boxes at baseline with covari [age, education, avg cog task]

FTLD SOB ~ PE +age + education + visit_average_task (e.g., avg of flanker at chapter 1,2,3)
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7847 -0.8861 -0.3365  0.3987  6.4589 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.97367    1.36274   0.714    0.476    
## target         -0.37166    0.24050  -1.545    0.125    
## baseline_age   -0.02864    0.01809  -1.583    0.116    
## educ.demo       0.08965    0.06240   1.437    0.153    
## visit_avg_strp -1.36018    0.17208  -7.905 1.21e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.746 on 125 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.3677, Adjusted R-squared:  0.3475 
## F-statistic: 18.17 on 4 and 125 DF,  p-value: 8.665e-12
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7467 -1.5575 -0.6598  0.8868 11.0334 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.50982    1.59546   0.320    0.750    
## target         0.80581    0.50611   1.592    0.113    
## baseline_age   0.01102    0.01996   0.552    0.582    
## educ.demo      0.04911    0.07539   0.651    0.516    
## visit_avg_flk -2.23930    0.20390 -10.983   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.451 on 178 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.4649, Adjusted R-squared:  0.4529 
## F-statistic: 38.66 on 4 and 178 DF,  p-value: < 2.2e-16
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.616 -1.848 -0.540  1.017 12.769 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.63661    2.06473  -0.793 0.429303    
## target            0.02293    0.01238   1.852 0.066082 .  
## baseline_age      0.06611    0.02533   2.609 0.010043 *  
## educ.demo        -0.02573    0.10357  -0.248 0.804161    
## visit_avg_gonogo -0.82807    0.24502  -3.380 0.000937 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.995 on 142 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.1704, Adjusted R-squared:  0.147 
## F-statistic: 7.291 on 4 and 142 DF,  p-value: 2.276e-05
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4474 -1.1741 -0.6269  0.4688 10.5732 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     -0.35811    1.60096  -0.224  0.82338   
## target          -0.31432    0.16808  -1.870  0.06384 . 
## baseline_age     0.01979    0.01971   1.004  0.31725   
## educ.demo        0.01053    0.07392   0.142  0.88697   
## visit_avg_nback -0.64271    0.21844  -2.942  0.00389 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.052 on 123 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.1397, Adjusted R-squared:  0.1117 
## F-statistic: 4.993 on 4 and 123 DF,  p-value: 0.0009186
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.137 -1.493 -0.507  1.158 10.326 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2.871500   1.687518   1.702   0.0906 .  
## target         -0.250740   0.359134  -0.698   0.4860    
## baseline_age   -0.018726   0.022418  -0.835   0.4047    
## educ.demo       0.008259   0.076766   0.108   0.9144    
## visit_avg_humi -2.392507   0.236390 -10.121   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.539 on 178 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.4258, Adjusted R-squared:  0.4129 
## F-statistic: 32.99 on 4 and 178 DF,  p-value: < 2.2e-16
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

d. PE-age-resid. and CDR+NACC-FTLD sum of boxes at baseline with covari

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1525 -0.9067 -0.4021  0.4705  6.8341 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.56627    1.03550  -0.547    0.585    
## target         -0.33828    0.24122  -1.402    0.163    
## educ.demo       0.07409    0.06208   1.193    0.235    
## visit_avg_strp -1.22217    0.15093  -8.098 4.11e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.757 on 126 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.3542, Adjusted R-squared:  0.3388 
## F-statistic: 23.03 on 3 and 126 DF,  p-value: 5.92e-12
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.9651 -1.5510 -0.7073  0.8587 11.1143 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1.14890    1.23618   0.929    0.354    
## target         0.80552    0.50527   1.594    0.113    
## educ.demo      0.05705    0.07423   0.769    0.443    
## visit_avg_flk -2.28792    0.18875 -12.121   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.447 on 179 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.4637, Adjusted R-squared:  0.4547 
## F-statistic: 51.58 on 3 and 179 DF,  p-value: < 2.2e-16
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8168 -1.1385 -0.8286  0.3473 10.9207 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       1.098293   1.457985   0.753   0.4530  
## target           -0.540870   0.210891  -2.565   0.0118 *
## educ.demo        -0.008335   0.088207  -0.094   0.9249  
## visit_avg_gonogo -0.186019   0.245451  -0.758   0.4502  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.26 on 104 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.06035,    Adjusted R-squared:  0.03324 
## F-statistic: 2.226 on 3 and 104 DF,  p-value: 0.0895
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3608 -1.1820 -0.5714  0.2018 10.9060 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.13883    1.24365   0.112 0.911296    
## target          -0.42820    0.34601  -1.238 0.218221    
## educ.demo        0.04466    0.07451   0.599 0.550028    
## visit_avg_nback -0.77825    0.20465  -3.803 0.000223 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.07 on 124 degrees of freedom
##   (70 observations deleted due to missingness)
## Multiple R-squared:  0.1179, Adjusted R-squared:  0.0966 
## F-statistic: 5.527 on 3 and 124 DF,  p-value: 0.001355
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

1b: PE and CDR+NACC-FTLD sum of boxes at baseline, CDR of 0 or 0.5

a. No Covari

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## [1] 31
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3961 -0.8795  0.1032  0.5697  2.0318 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.8054     0.2219   8.137 9.69e-09 ***
## target       -0.3813     0.2483  -1.536    0.136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9624 on 27 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.08031,    Adjusted R-squared:  0.04625 
## F-statistic: 2.358 on 1 and 27 DF,  p-value: 0.1363
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## [1] 46
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3795 -0.9885  0.1610  0.7411  1.7795 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7287     0.1764   9.803 2.62e-12 ***
## target        0.1627     0.3520   0.462    0.646    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.018 on 41 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.005182,   Adjusted R-squared:  -0.01908 
## F-statistic: 0.2136 on 1 and 41 DF,  p-value: 0.6464
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 3 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## [1] 36
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4712 -0.8064  0.1936  0.7470  1.7033 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.806368   0.182322   9.908    4e-11 ***
## target      -0.004848   0.008737  -0.555    0.583    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9877 on 31 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.009833,   Adjusted R-squared:  -0.02211 
## F-statistic: 0.3078 on 1 and 31 DF,  p-value: 0.583
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 3 rows containing non-finite outside the scale range (`stat_smooth()`).
## Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## [1] 29
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.53019 -0.70967  0.06937  0.46975  1.58356 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6780     0.1691   9.925 3.73e-10 ***
## target       -0.5553     0.1756  -3.163  0.00407 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8749 on 25 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2858, Adjusted R-squared:  0.2573 
## F-statistic: 10.01 on 1 and 25 DF,  p-value: 0.004065
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 2 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## [1] 46
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.57681 -0.89541  0.08984  0.70604  1.68476 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.9102     0.1857  10.286 6.37e-13 ***
## target       -0.3889     0.2896  -1.343    0.187    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9985 on 41 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.04211,    Adjusted R-squared:  0.01875 
## F-statistic: 1.802 on 1 and 41 DF,  p-value: 0.1868
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 3 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

b. CDR 0 and 0.5. Covari for age, education

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.51556 -0.67382  0.08445  0.58168  2.27388 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  -1.19137    2.10357  -0.566   0.5762  
## target       -0.47610    0.25674  -1.854   0.0755 .
## baseline_age  0.02614    0.02396   1.091   0.2858  
## educ.demo     0.09277    0.07365   1.260   0.2195  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9603 on 25 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.152,  Adjusted R-squared:  0.05026 
## F-statistic: 1.494 on 3 and 25 DF,  p-value: 0.2404
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3773 -1.0023  0.1696  0.7481  1.7796 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)   1.924392   1.451669   1.326    0.193
## target        0.157402   0.385943   0.408    0.686
## baseline_age -0.001277   0.017409  -0.073    0.942
## educ.demo    -0.007275   0.064145  -0.113    0.910
## 
## Residual standard error: 1.043 on 39 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.005673,   Adjusted R-squared:  -0.07081 
## F-statistic: 0.07417 on 3 and 39 DF,  p-value: 0.9735
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4317 -0.8460  0.1896  0.6669  1.7259 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)   1.706620   1.625630   1.050    0.302
## target       -0.003749   0.010005  -0.375    0.711
## baseline_age  0.009801   0.017246   0.568    0.574
## educ.demo    -0.032066   0.077474  -0.414    0.682
## 
## Residual standard error: 1.013 on 29 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.02632,    Adjusted R-squared:  -0.07441 
## F-statistic: 0.2613 on 3 and 29 DF,  p-value: 0.8527
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3812 -0.6430 -0.0493  0.5703  1.6230 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -1.25157    1.94012  -0.645   0.5252   
## target       -0.59914    0.17658  -3.393   0.0025 **
## baseline_age  0.03120    0.02195   1.422   0.1685   
## educ.demo     0.06674    0.06831   0.977   0.3387   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8683 on 23 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.3528, Adjusted R-squared:  0.2684 
## F-statistic:  4.18 on 3 and 23 DF,  p-value: 0.01683
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.55984 -0.90489  0.07113  0.69716  1.72021 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)   1.8045141  1.4258187   1.266    0.213
## target       -0.3964325  0.3071279  -1.291    0.204
## baseline_age  0.0001914  0.0165994   0.012    0.991
## educ.demo     0.0060817  0.0625589   0.097    0.923
## 
## Residual standard error: 1.024 on 39 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.04234,    Adjusted R-squared:  -0.03132 
## F-statistic: 0.5748 on 3 and 39 DF,  p-value: 0.635
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

c. CDR 0 and 0.5. Covari for age, education, and task

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.40738 -0.62299 -0.03928  0.65300  2.28915 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    -1.01404    2.17815  -0.466   0.6457  
## target         -0.50206    0.26793  -1.874   0.0732 .
## baseline_age    0.02110    0.02704   0.780   0.4428  
## educ.demo       0.09770    0.07576   1.290   0.2095  
## visit_avg_strp -0.09411    0.21893  -0.430   0.6711  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9764 on 24 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1585, Adjusted R-squared:  0.01824 
## F-statistic:  1.13 on 4 and 24 DF,  p-value: 0.3659
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2568 -0.8670 -0.1166  0.6620  1.8207 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    2.83152    1.34416   2.107  0.04182 * 
## target         0.50074    0.36585   1.369  0.17913   
## baseline_age  -0.03410    0.01893  -1.801  0.07962 . 
## educ.demo      0.05491    0.06132   0.895  0.37619   
## visit_avg_flk -0.89451    0.28687  -3.118  0.00346 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9429 on 38 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.2083, Adjusted R-squared:  0.1249 
## F-statistic: 2.499 on 4 and 38 DF,  p-value: 0.05865
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.51734 -0.79592  0.02604  0.78116  1.87203 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)       1.462370   1.687654   0.867    0.394
## target           -0.004294   0.010147  -0.423    0.675
## baseline_age      0.014648   0.019042   0.769    0.448
## educ.demo        -0.035322   0.078459  -0.450    0.656
## visit_avg_gonogo  0.138162   0.218761   0.632    0.533
## 
## Residual standard error: 1.023 on 28 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.03999,    Adjusted R-squared:  -0.09715 
## F-statistic: 0.2916 on 4 and 28 DF,  p-value: 0.8809
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.45242 -0.65086  0.01927  0.57093  1.58774 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     -1.23356    1.98287  -0.622  0.54027   
## target          -0.60127    0.18057  -3.330  0.00304 **
## baseline_age     0.02984    0.02318   1.287  0.21133   
## educ.demo        0.06930    0.07064   0.981  0.33725   
## visit_avg_nback -0.04709    0.20410  -0.231  0.81965   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8868 on 22 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.3544, Adjusted R-squared:  0.237 
## F-statistic: 3.019 on 4 and 22 DF,  p-value: 0.03979
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.52365 -0.79580  0.02989  0.63417  2.00021 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     1.85317    1.35509   1.368   0.1795  
## target         -0.40392    0.29187  -1.384   0.1745  
## baseline_age   -0.01359    0.01689  -0.804   0.4263  
## educ.demo       0.04399    0.06173   0.713   0.4805  
## visit_avg_humi -0.52409    0.23009  -2.278   0.0285 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9728 on 38 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.1574, Adjusted R-squared:  0.06869 
## F-statistic: 1.774 on 4 and 38 DF,  p-value: 0.1541
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

d. CDR 0 and 0.5. PE-age-resid. and CDR+NACC-FTLD sum of boxes at baseline with covari

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1600 -0.8942 -0.4089  0.4743  6.8162 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -0.44286    1.03381  -0.428    0.669    
## target         -0.35295    0.24164  -1.461    0.147    
## educ.demo       0.07485    0.06206   1.206    0.230    
## visit_avg_strp -1.22614    0.15069  -8.137 3.32e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.756 on 126 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.355,  Adjusted R-squared:  0.3397 
## F-statistic: 23.12 on 3 and 126 DF,  p-value: 5.46e-12
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.9420 -1.5441 -0.6975  0.8618 11.1141 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1.05678    1.24815   0.847    0.398    
## target         0.82029    0.50445   1.626    0.106    
## educ.demo      0.05638    0.07409   0.761    0.448    
## visit_avg_flk -2.28087    0.18911 -12.061   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.446 on 179 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.464,  Adjusted R-squared:  0.455 
## F-statistic: 51.65 on 3 and 179 DF,  p-value: < 2.2e-16
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1181 -1.6966 -0.9825  0.9741 12.3762 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.51610    1.70797   0.888   0.3762    
## target            0.02578    0.01258   2.050   0.0422 *  
## educ.demo         0.02665    0.10365   0.257   0.7975    
## visit_avg_gonogo -0.99003    0.24179  -4.095 7.05e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.055 on 143 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.1306, Adjusted R-squared:  0.1124 
## F-statistic: 7.161 on 3 and 143 DF,  p-value: 0.000163
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3071 -1.1341 -0.6531  0.3004 10.5975 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.66855    1.23206   0.543 0.588357    
## target          -0.32123    0.16794  -1.913 0.058088 .  
## educ.demo        0.01855    0.07349   0.252 0.801203    
## visit_avg_nback -0.71357    0.20673  -3.452 0.000763 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.052 on 124 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.1326, Adjusted R-squared:  0.1117 
## F-statistic: 6.321 on 3 and 124 DF,  p-value: 0.0005036
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0735 -1.5614 -0.5075  1.1514 10.5223 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.924030   1.248369   1.541    0.125    
## target         -0.287418   0.356139  -0.807    0.421    
## educ.demo      -0.001822   0.075747  -0.024    0.981    
## visit_avg_humi -2.290200   0.202014 -11.337   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.537 on 179 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.4235, Adjusted R-squared:  0.4138 
## F-statistic: 43.83 on 3 and 179 DF,  p-value: < 2.2e-16
## 
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

2a: PE change in FTLD SOB CDR 0 and 0.5

a. Change in SOB for those with CDR 0 or 0.5 global at baseline

df.baseline.analsyes.a2<-df.pe.a.baselinemeged %>%
  filter(visit==1,
         !is.na(max_dif_ftld_global)) %>%
   filter(baseline_ftldcdr_glob<=0.5)#%>%
  #group_by(unique_id) %>%
  #  slice(1) 

lp.fml<-"max_dif_ftldbox~target"
for (i.raw in lst.pe) {
  
  # lp.fml<-paste("ftldcdr_box.computed~target+baseline_age+educ.demo+",
  #             lst.pe.covari[grep(i.raw,lst.pe)])
  
  df.pe.loop<-df.baseline.analsyes.a2%>%
    mutate(target=UQ(sym(i.raw)))%>%
    filter(!is.na(target)) %>%
    group_by(unique_id, visit)%>%
    mutate(rslice=1:n())%>%
    filter(rslice==1) %>%
    ungroup() 
  
  lm.pe.loop<-NA
lm.pe.loop= lm(formula = lp.fml, 
               data = df.pe.loop)
sum<-summary(lm.pe.loop)


print("##############################")
print("##############################")
print("##############################")
print("##############################")
print(i.raw)
print(sum)
print(ggplot(df.pe.loop, aes(x=target, y=max_dif_ftldbox))+
        geom_point()+
        geom_smooth(method="lm")+
        ggtitle(label = i.raw)
)
print("##############################")
print("##############################")
print("##############################")




}
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16722 -0.07184 -0.04924 -0.02501  1.41563 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.02655    0.02449   1.084   0.2803  
## target       0.05701    0.03165   1.801   0.0741 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.218 on 121 degrees of freedom
## Multiple R-squared:  0.02612,    Adjusted R-squared:  0.01807 
## F-statistic: 3.245 on 1 and 121 DF,  p-value: 0.07413
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4658 -0.1353 -0.1044 -0.0612  3.3281 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.07047    0.04513   1.562   0.1207  
## target       0.26979    0.12644   2.134   0.0346 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4649 on 138 degrees of freedom
## Multiple R-squared:  0.03194,    Adjusted R-squared:  0.02492 
## F-statistic: 4.553 on 1 and 138 DF,  p-value: 0.03463
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2988 -0.1263 -0.1121 -0.0909  3.3879 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 0.107405   0.042286    2.54   0.0124 *
## target      0.002363   0.002339    1.01   0.3146  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4409 on 113 degrees of freedom
## Multiple R-squared:  0.00895,    Adjusted R-squared:  0.0001797 
## F-statistic:  1.02 on 1 and 113 DF,  p-value: 0.3146
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.09169 -0.05784 -0.05166 -0.04534  1.43837 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.04991    0.02111   2.364   0.0197 *
## target       0.01159    0.01857   0.624   0.5338  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2223 on 119 degrees of freedom
## Multiple R-squared:  0.003262,   Adjusted R-squared:  -0.005114 
## F-statistic: 0.3894 on 1 and 119 DF,  p-value: 0.5338
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1594 -0.1251 -0.1146 -0.1038  3.3811 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.11054    0.04469   2.473   0.0146 *
## target       0.02705    0.07430   0.364   0.7164  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4722 on 138 degrees of freedom
## Multiple R-squared:  0.0009595,  Adjusted R-squared:  -0.00628 
## F-statistic: 0.1325 on 1 and 138 DF,  p-value: 0.7164
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

b. Covari for age and education

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.18808 -0.08182 -0.04306 -0.00001  1.33659 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.379720   0.164206   2.312   0.0225 *
## target        0.059022   0.031146   1.895   0.0605 .
## baseline_age -0.001027   0.001948  -0.527   0.5991  
## educ.demo    -0.017966   0.007607  -2.362   0.0198 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2145 on 119 degrees of freedom
## Multiple R-squared:  0.07343,    Adjusted R-squared:  0.05007 
## F-statistic: 3.143 on 3 and 119 DF,  p-value: 0.02783
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5112 -0.1490 -0.0887 -0.0283  3.2827 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.219913   0.327808   0.671   0.5034  
## target        0.226366   0.130566   1.734   0.0852 .
## baseline_age  0.002895   0.003872   0.748   0.4560  
## educ.demo    -0.019290   0.015930  -1.211   0.2280  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4652 on 136 degrees of freedom
## Multiple R-squared:  0.04468,    Adjusted R-squared:  0.02361 
## F-statistic:  2.12 on 3 and 136 DF,  p-value: 0.1005
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3270 -0.1526 -0.1005 -0.0355  3.3151 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)   0.281243   0.328734   0.856    0.394
## target        0.002809   0.002395   1.173    0.243
## baseline_age  0.004227   0.003882   1.089    0.279
## educ.demo    -0.026301   0.016595  -1.585    0.116
## 
## Residual standard error: 0.4385 on 111 degrees of freedom
## Multiple R-squared:  0.03726,    Adjusted R-squared:  0.01124 
## F-statistic: 1.432 on 3 and 111 DF,  p-value: 0.2373
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.15306 -0.07580 -0.04968 -0.00544  1.36283 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.4056912  0.1722218   2.356   0.0202 *
## target        0.0045987  0.0185967   0.247   0.8051  
## baseline_age -0.0009093  0.0020098  -0.452   0.6518  
## educ.demo    -0.0182935  0.0079620  -2.298   0.0234 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.219 on 117 degrees of freedom
## Multiple R-squared:  0.04921,    Adjusted R-squared:  0.02483 
## F-statistic: 2.018 on 3 and 117 DF,  p-value: 0.1151
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3106 -0.1534 -0.1010 -0.0435  3.3085 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.324235   0.329874   0.983   0.3274  
## target        0.033386   0.075255   0.444   0.6580  
## baseline_age  0.003569   0.003911   0.913   0.3631  
## educ.demo    -0.026275   0.015796  -1.663   0.0985 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4699 on 136 degrees of freedom
## Multiple R-squared:  0.02498,    Adjusted R-squared:  0.003468 
## F-statistic: 1.161 on 3 and 136 DF,  p-value: 0.327
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

c. Covari for age and education and task

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.19291 -0.07872 -0.04253 -0.00174  1.28888 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     0.439720   0.171758   2.560   0.0117 *
## target          0.055792   0.031219   1.787   0.0765 .
## baseline_age   -0.002519   0.002324  -1.084   0.2808  
## educ.demo      -0.016504   0.007697  -2.144   0.0341 *
## visit_avg_strp -0.032898   0.028072  -1.172   0.2436  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2141 on 118 degrees of freedom
## Multiple R-squared:  0.08409,    Adjusted R-squared:  0.05304 
## F-statistic: 2.708 on 4 and 118 DF,  p-value: 0.03348
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7296 -0.1338 -0.0819 -0.0147  3.3746 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    0.452058   0.341936   1.322   0.1884  
## target         0.259682   0.129906   1.999   0.0476 *
## baseline_age  -0.001876   0.004443  -0.422   0.6736  
## educ.demo     -0.013527   0.015968  -0.847   0.3984  
## visit_avg_flk -0.198520   0.094140  -2.109   0.0368 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4594 on 135 degrees of freedom
## Multiple R-squared:  0.07514,    Adjusted R-squared:  0.04774 
## F-statistic: 2.742 on 4 and 135 DF,  p-value: 0.03114
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3367 -0.1638 -0.0921 -0.0222  3.2819 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)       0.216518   0.332401   0.651    0.516
## target            0.002552   0.002400   1.063    0.290
## baseline_age      0.005258   0.003967   1.326    0.188
## educ.demo        -0.026668   0.016563  -1.610    0.110
## visit_avg_gonogo  0.055400   0.045854   1.208    0.230
## 
## Residual standard error: 0.4376 on 110 degrees of freedom
## Multiple R-squared:  0.04987,    Adjusted R-squared:  0.01532 
## F-statistic: 1.443 on 4 and 110 DF,  p-value: 0.2246
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.21605 -0.09536 -0.03636  0.00249  1.28807 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      0.462589   0.170736   2.709  0.00776 **
## target           0.011175   0.018463   0.605  0.54620   
## baseline_age    -0.002458   0.002080  -1.182  0.23975   
## educ.demo       -0.016597   0.007847  -2.115  0.03655 * 
## visit_avg_nback -0.053764   0.022928  -2.345  0.02073 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2149 on 116 degrees of freedom
## Multiple R-squared:  0.09224,    Adjusted R-squared:  0.06094 
## F-statistic: 2.947 on 4 and 116 DF,  p-value: 0.02318
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5478 -0.1711 -0.0825  0.0276  3.1839 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     0.661856   0.340460   1.944   0.0540 . 
## target          0.062042   0.073827   0.840   0.4022   
## baseline_age   -0.003059   0.004412  -0.693   0.4894   
## educ.demo      -0.022282   0.015422  -1.445   0.1508   
## visit_avg_humi -0.167358   0.056483  -2.963   0.0036 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4571 on 135 degrees of freedom
## Multiple R-squared:  0.08451,    Adjusted R-squared:  0.05739 
## F-statistic: 3.116 on 4 and 135 DF,  p-value: 0.0173
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

c. Covari for and education and task RESID PE

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.20618 -0.08080 -0.04290 -0.00461  1.30832 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     0.334786   0.126248   2.652   0.0091 **
## target          0.058786   0.031084   1.891   0.0610 . 
## educ.demo      -0.017689   0.007609  -2.325   0.0218 * 
## visit_avg_strp -0.017232   0.023459  -0.735   0.4641   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2141 on 119 degrees of freedom
## Multiple R-squared:  0.07608,    Adjusted R-squared:  0.05278 
## F-statistic: 3.266 on 3 and 119 DF,  p-value: 0.02381
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7195 -0.1387 -0.0815 -0.0259  3.3637 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    0.38363    0.25793   1.487   0.1392  
## target         0.25505    0.12858   1.984   0.0493 *
## educ.demo     -0.01444    0.01563  -0.924   0.3571  
## visit_avg_flk -0.18406    0.08091  -2.275   0.0245 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4579 on 136 degrees of freedom
## Multiple R-squared:  0.07451,    Adjusted R-squared:  0.0541 
## F-statistic:  3.65 on 3 and 136 DF,  p-value: 0.0143
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.20446 -0.09710 -0.05039 -0.00877  1.31745 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)       0.402306   0.155384   2.589   0.0111 *
## target            0.007132   0.023467   0.304   0.7618  
## educ.demo        -0.021294   0.009440  -2.256   0.0263 *
## visit_avg_gonogo  0.038261   0.026600   1.438   0.1535  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2363 on 97 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.07146,    Adjusted R-squared:  0.04275 
## F-statistic: 2.489 on 3 and 97 DF,  p-value: 0.06495
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi_resid"
## 
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.22092 -0.08657 -0.03919  0.00244  1.29341 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      0.371772   0.129748   2.865  0.00494 **
## target           0.038979   0.036658   1.063  0.28983   
## educ.demo       -0.019601   0.007818  -2.507  0.01354 * 
## visit_avg_nback -0.043306   0.021373  -2.026  0.04502 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2146 on 117 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.08655,    Adjusted R-squared:  0.06313 
## F-statistic: 3.695 on 3 and 117 DF,  p-value: 0.01386
## `geom_smooth()` using formula = 'y ~ x'

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

3. LMEs.

a. Full sample. FTLD_SOB predicted by age-residualized baseline PEs.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0145209 (tol = 0.002, component 1)
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_strp_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 1773.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5718 -0.0834 -0.0314  0.0737  7.2680 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev. Corr
##  unique_id (Intercept)              3.113e+00 1.764480     
##            days_from_login.computed 4.842e-05 0.006958 0.45
##  Residual                           2.923e-01 0.540646     
## Number of obs: 653, groups:  unique_id, 139
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      6.623e-03  8.411e-01  2.141e+02   0.008
## target                          -3.277e-01  2.340e-01  1.228e+02  -1.400
## days_from_login.computed         1.555e-03  8.602e-04  4.447e+01   1.807
## educ.demo                        4.773e-02  5.030e-02  2.141e+02   0.949
## visit_avg_strp                  -7.500e-01  1.227e-01  2.450e+02  -6.113
## target:days_from_login.computed -4.787e-04  1.365e-03  4.721e+01  -0.351
##                                 Pr(>|t|)    
## (Intercept)                       0.9937    
## target                            0.1639    
## days_from_login.computed          0.0775 .  
## educ.demo                         0.3438    
## visit_avg_strp                  3.83e-09 ***
## target:days_from_login.computed   0.7273    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target       0.031                            
## dys_frm_lg.  0.058 -0.031                     
## educ.demo   -0.982 -0.055 -0.007              
## vst_vg_strp  0.085 -0.050  0.039 -0.037       
## trgt:dys__.  0.005  0.255 -0.062 -0.009  0.022
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0145209 (tol = 0.002, component 1)
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 19 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 19 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 20.7644 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_flk_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 2716.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8765 -0.2040 -0.0661  0.1650  5.6149 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev. Corr
##  unique_id (Intercept)              2.4835742 1.575936     
##            days_from_login.computed 0.0000262 0.005118 0.24
##  Residual                           0.5431790 0.737007     
## Number of obs: 882, groups:  unique_id, 197
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      1.445e+00  7.437e-01  6.047e+02   1.943
## target                           8.936e-01  3.298e-01  5.192e+02   2.710
## days_from_login.computed        -8.312e-04  6.554e-04  5.298e+01  -1.268
## educ.demo                        4.294e-02  4.469e-02  6.063e+02   0.961
## visit_avg_flk                   -1.800e+00  1.128e-01  6.845e+02 -15.955
## target:days_from_login.computed  5.582e-03  1.778e-03  6.276e+01   3.140
##                                 Pr(>|t|)    
## (Intercept)                      0.05250 .  
## target                           0.00696 ** 
## days_from_login.computed         0.21025    
## educ.demo                        0.33698    
## visit_avg_flk                    < 2e-16 ***
## target:days_from_login.computed  0.00257 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target      -0.203                            
## dys_frm_lg.  0.018  0.008                     
## educ.demo   -0.987  0.168 -0.008              
## vist_vg_flk  0.060  0.074  0.159 -0.058       
## trgt:dys__. -0.006  0.052 -0.320  0.005 -0.016
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 20.7644 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 29 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 29 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.110229 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_nback_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 1781
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5236 -0.0649 -0.0261  0.0393  7.3250 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev. Corr
##  unique_id (Intercept)              4.220e+00 2.054220     
##            days_from_login.computed 5.696e-05 0.007547 0.72
##  Residual                           2.899e-01 0.538454     
## Number of obs: 648, groups:  unique_id, 137
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      4.574e-01  8.731e-01  1.493e+02   0.524
## target                          -3.235e-01  1.638e-01  1.342e+02  -1.975
## days_from_login.computed         1.746e-03  8.674e-04  3.976e+01   2.012
## educ.demo                        2.730e-02  5.201e-02  1.441e+02   0.525
## visit_avg_nback                 -1.363e-01  8.973e-02  2.659e+02  -1.519
## target:days_from_login.computed -1.943e-03  7.651e-04  4.009e+01  -2.540
##                                 Pr(>|t|)  
## (Intercept)                       0.6012  
## target                            0.0504 .
## days_from_login.computed          0.0510 .
## educ.demo                         0.6005  
## visit_avg_nback                   0.1300  
## target:days_from_login.computed   0.0151 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target      -0.024                            
## dys_frm_lg.  0.126  0.116                     
## educ.demo   -0.978  0.067 -0.020              
## vst_vg_nbck  0.046 -0.101 -0.083 -0.033       
## trgt:dys__.  0.034  0.527  0.192 -0.013 -0.097
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.110229 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 21 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 21 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0603325 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_humi_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 2518.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.0612 -0.0809 -0.0146  0.0742  7.4963 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev. Corr
##  unique_id (Intercept)              7.802e+00 2.793229     
##            days_from_login.computed 3.534e-05 0.005944 0.19
##  Residual                           2.698e-01 0.519394     
## Number of obs: 881, groups:  unique_id, 197
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      2.320e+00  9.969e-01  4.719e+02   2.327
## target                          -3.682e-01  3.856e-01  1.723e+02  -0.955
## days_from_login.computed         1.571e-03  6.690e-04  6.643e+01   2.349
## educ.demo                       -1.381e-02  5.979e-02  4.914e+02  -0.231
## visit_avg_humi                  -8.828e-01  1.305e-01  7.589e+02  -6.766
## target:days_from_login.computed -7.595e-04  1.370e-03  6.535e+01  -0.554
##                                 Pr(>|t|)    
## (Intercept)                       0.0204 *  
## target                            0.3410    
## days_from_login.computed          0.0218 *  
## educ.demo                         0.8174    
## visit_avg_humi                  2.65e-11 ***
## target:days_from_login.computed   0.5812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target       0.065                            
## dys_frm_lg.  0.014  0.010                     
## educ.demo   -0.979 -0.055  0.003              
## visit_vg_hm  0.042 -0.075 -0.072 -0.016       
## trgt:dys__. -0.007  0.090  0.135  0.006 -0.064
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0603325 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 31 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 31 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"

a. Full sample. FTLD_SOB predicted by age-residualized baseline PEs.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 13.7024 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_strp_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 592.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8470 -0.2130 -0.0815  0.0245  3.7289 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev.  Corr
##  unique_id (Intercept)              1.480e-01 0.3847017     
##            days_from_login.computed 3.609e-07 0.0006008 0.26
##  Residual                           9.298e-02 0.3049288     
## Number of obs: 590, groups:  unique_id, 123
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      4.382e-01  2.416e-01  5.239e+02   1.814
## target                          -9.925e-02  6.200e-02  4.870e+02  -1.601
## days_from_login.computed         2.010e-04  1.424e-04  7.207e+01   1.412
## educ.demo                       -4.484e-03  1.457e-02  5.244e+02  -0.308
## visit_avg_strp                  -1.943e-01  4.094e-02  5.736e+02  -4.745
## target:days_from_login.computed  2.459e-04  2.351e-04  7.060e+01   1.046
##                                 Pr(>|t|)    
## (Intercept)                       0.0703 .  
## target                            0.1101    
## days_from_login.computed          0.1622    
## educ.demo                         0.7583    
## visit_avg_strp                  2.63e-06 ***
## target:days_from_login.computed   0.2991    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target       0.014                            
## dys_frm_lg. -0.028  0.024                     
## educ.demo   -0.987 -0.036  0.012              
## vst_vg_strp  0.089  0.034 -0.083 -0.066       
## trgt:dys__. -0.026 -0.078 -0.103  0.030 -0.033
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 13.7024 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 17 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 17 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.743428 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_flk_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 767.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9279 -0.0754 -0.0375  0.0269  5.6665 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev. Corr
##  unique_id (Intercept)              7.975e-01 0.893052     
##            days_from_login.computed 4.615e-06 0.002148 0.35
##  Residual                           6.166e-02 0.248313     
## Number of obs: 673, groups:  unique_id, 140
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      6.909e-01  4.133e-01  3.215e+02   1.672
## target                           3.988e-01  2.517e-01  1.613e+02   1.585
## days_from_login.computed         3.759e-04  2.903e-04  7.306e+01   1.295
## educ.demo                       -6.183e-03  2.476e-02  3.310e+02  -0.250
## visit_avg_flk                   -1.263e-01  9.046e-02  5.964e+02  -1.396
## target:days_from_login.computed  1.179e-05  7.782e-04  7.840e+01   0.015
##                                 Pr(>|t|)  
## (Intercept)                       0.0955 .
## target                            0.1150  
## days_from_login.computed          0.1995  
## educ.demo                         0.8030  
## visit_avg_flk                     0.1634  
## target:days_from_login.computed   0.9879  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target      -0.200                            
## dys_frm_lg.  0.026 -0.033                     
## educ.demo   -0.981  0.172 -0.005              
## vist_vg_flk -0.040 -0.033  0.251 -0.015       
## trgt:dys__. -0.019  0.213 -0.250  0.014 -0.009
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.743428 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 20 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 20 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 4.50689 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_nback_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 233.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0296 -0.0745 -0.0260  0.0350  5.8262 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev.  Corr 
##  unique_id (Intercept)              3.493e-01 0.5909746      
##            days_from_login.computed 4.322e-07 0.0006574 -0.11
##  Residual                           3.398e-02 0.1843488      
## Number of obs: 585, groups:  unique_id, 121
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      6.202e-01  2.974e-01  4.228e+02   2.085
## target                          -1.642e-01  5.087e-02  2.541e+02  -3.227
## days_from_login.computed         1.975e-04  1.188e-04  7.860e+01   1.663
## educ.demo                       -1.735e-02  1.786e-02  4.288e+02  -0.971
## visit_avg_nback                 -4.143e-02  2.691e-02  3.267e+02  -1.539
## target:days_from_login.computed  2.602e-05  1.163e-04  8.097e+01   0.224
##                                 Pr(>|t|)   
## (Intercept)                      0.03765 * 
## target                           0.00142 **
## days_from_login.computed         0.10023   
## educ.demo                        0.33192   
## visit_avg_nback                  0.12470   
## target:days_from_login.computed  0.82352   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target      -0.078                            
## dys_frm_lg. -0.046  0.006                     
## educ.demo   -0.982  0.111  0.023              
## vst_vg_nbck  0.015 -0.067 -0.272 -0.011       
## trgt:dys__. -0.015 -0.096  0.101  0.012 -0.217
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 4.50689 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 19 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 19 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 3.05301 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "baseline_pe_humi_resid"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: lp.fml
##    Data: df.pe.loop
## 
## REML criterion at convergence: 743.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9077 -0.1133 -0.0331  0.0878  5.6910 
## 
## Random effects:
##  Groups    Name                     Variance  Std.Dev. Corr
##  unique_id (Intercept)              6.973e-01 0.835035     
##            days_from_login.computed 4.933e-06 0.002221 0.27
##  Residual                           5.991e-02 0.244765     
## Number of obs: 672, groups:  unique_id, 140
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      8.706e-01  3.890e-01  3.234e+02   2.238
## target                           8.807e-02  1.353e-01  1.753e+02   0.651
## days_from_login.computed         6.437e-04  2.867e-04  6.248e+01   2.245
## educ.demo                       -1.577e-02  2.349e-02  3.306e+02  -0.671
## visit_avg_humi                  -3.706e-01  6.119e-02  5.216e+02  -6.057
## target:days_from_login.computed  1.215e-05  5.744e-04  6.194e+01   0.021
##                                 Pr(>|t|)    
## (Intercept)                       0.0259 *  
## target                            0.5159    
## days_from_login.computed          0.0283 *  
## educ.demo                         0.5025    
## visit_avg_humi                  2.66e-09 ***
## target:days_from_login.computed   0.9832    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) target dys__. edc.dm vst_v_
## target       0.101                            
## dys_frm_lg.  0.025  0.000                     
## educ.demo   -0.983 -0.105  0.002              
## visit_vg_hm -0.007 -0.050 -0.114 -0.007       
## trgt:dys__. -0.009  0.125  0.123  0.010 -0.075
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 3.05301 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 22 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 22 rows containing missing values or values outside the scale range
## (`geom_point()`).

## [1] "##############################"
## [1] "##############################"
## [1] "##############################"