Paso 1. Instalar paquetes y llamar librerías

#install.packages("e1071")
library(e1071)
#install.packages("caret") 
library(caret)
## Cargando paquete requerido: ggplot2
## Cargando paquete requerido: lattice

Paso 2. Crear la base de datos

df <- read.csv("C:/Users/valer/OneDrive/Escritorio/IA con impacto empresarial/Base de datos/heart.csv")

Paso 3. Análisis exploratorio

summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
df$target <- as.factor(df$target)
summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal       target 
##  Min.   :0.000   0:499  
##  1st Qu.:2.000   1:526  
##  Median :2.000          
##  Mean   :2.324          
##  3rd Qu.:3.000          
##  Max.   :3.000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...

Paso 4. Partir la base de datos

set.seed(123)
renglones_entrenamiento <- createDataPartition(df$target, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]

Paso 5. Construir el modelo SVM Linear

modelo <- svm(target ~ ., data = entrenamiento, kernel = "linear")

resultado_entrenamiento <- predict(modelo,entrenamiento)
resultado_prueba <- predict(modelo,prueba)

Paso 6. Matriz de Confusión

mcre <- confusionMatrix(resultado_entrenamiento, entrenamiento$target) # matriz de confusión del resultado del entrenamiento
mcre
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 301  37
##          1  99 384
##                                           
##                Accuracy : 0.8343          
##                  95% CI : (0.8071, 0.8592)
##     No Information Rate : 0.5128          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6672          
##                                           
##  Mcnemar's Test P-Value : 1.689e-07       
##                                           
##             Sensitivity : 0.7525          
##             Specificity : 0.9121          
##          Pos Pred Value : 0.8905          
##          Neg Pred Value : 0.7950          
##              Prevalence : 0.4872          
##          Detection Rate : 0.3666          
##    Detection Prevalence : 0.4117          
##       Balanced Accuracy : 0.8323          
##                                           
##        'Positive' Class : 0               
## 
mcrp <- confusionMatrix(resultado_prueba,prueba$target) # matriz de confusión del resultado de la prueba
mcrp
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 78 10
##          1 21 95
##                                           
##                Accuracy : 0.848           
##                  95% CI : (0.7913, 0.8944)
##     No Information Rate : 0.5147          
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.6948          
##                                           
##  Mcnemar's Test P-Value : 0.07249         
##                                           
##             Sensitivity : 0.7879          
##             Specificity : 0.9048          
##          Pos Pred Value : 0.8864          
##          Neg Pred Value : 0.8190          
##              Prevalence : 0.4853          
##          Detection Rate : 0.3824          
##    Detection Prevalence : 0.4314          
##       Balanced Accuracy : 0.8463          
##                                           
##        'Positive' Class : 0               
## 
resultados <- data.frame("SVM Lineal" = c(mcre$overall["Accuracy"], mcrp$overall["Accuracy"]))
rownames(resultados) <- c("Precision de entrenamiento", "Precision de prueba")
resultados
##                            SVM.Lineal
## Precision de entrenamiento  0.8343484
## Precision de prueba         0.8480392

Paso 7. Obtener predicción

paciente <- data.frame(
  age = 52,
  sex = 1,
  cp = 0,
  trestbps = 125,
  chol = 212,
  fbs = 0,
  restecg = 1,
  thalach = 168,
  exang = 0,
  oldpeak = 1,
  slope = 1,
  ca = 0,
  thal = 3
)

Paso 8. Hacer la predicción

prediccion <- predict(modelo, paciente)

if(prediccion == 1) {
  print("Tiene enfermedad cardíaca")
} else {
  print("No tiene enfermedad cardíaca")
}
## [1] "No tiene enfermedad cardíaca"

Conclusión

En conclusión, la Máquina de Vectores de Soprote es una herramienta robusta para la predicción de diágnostico en enfermedad cardiaca.

LS0tDQp0aXRsZTogIlNWTSBMaW5lYXIgLSBFbmZlcm1lZGFkIGNhcmRpYWNhIg0KYXV0aG9yOiAiVmFsZXJpYSBOYW5nbyAtIEEwMTE3NDEwNiINCmRhdGU6ICIyMDI0LTA4LTIyIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlIA0KICAgIHRoZW1lOiBkZWZhdWx0IA0KLS0tDQohW10oQzpcXFVzZXJzXFx2YWxlclxcT25lRHJpdmVcXEVzY3JpdG9yaW9cXElBIGNvbiBpbXBhY3RvIGVtcHJlc2FyaWFsXFxSU3R1ZGlvXFxJbcOhZ2VuZXNcXGhlYXJ0LmdpZikgDQoNCiMgUGFzbyAxLiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzDQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJlMTA3MSIpDQpsaWJyYXJ5KGUxMDcxKQ0KI2luc3RhbGwucGFja2FnZXMoImNhcmV0IikgDQpsaWJyYXJ5KGNhcmV0KQ0KYGBgDQoNCiMgUGFzbyAyLiBDcmVhciBsYSBiYXNlIGRlIGRhdG9zDQpgYGB7cn0NCmRmIDwtIHJlYWQuY3N2KCJDOi9Vc2Vycy92YWxlci9PbmVEcml2ZS9Fc2NyaXRvcmlvL0lBIGNvbiBpbXBhY3RvIGVtcHJlc2FyaWFsL0Jhc2UgZGUgZGF0b3MvaGVhcnQuY3N2IikNCmBgYA0KDQojIFBhc28gMy4gQW7DoWxpc2lzIGV4cGxvcmF0b3Jpbw0KYGBge3J9DQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KZGYkdGFyZ2V0IDwtIGFzLmZhY3RvcihkZiR0YXJnZXQpDQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KYGBgDQoNCiMgUGFzbyA0LiBQYXJ0aXIgbGEgYmFzZSBkZSBkYXRvcw0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpyZW5nbG9uZXNfZW50cmVuYW1pZW50byA8LSBjcmVhdGVEYXRhUGFydGl0aW9uKGRmJHRhcmdldCwgcD0wLjgsIGxpc3Q9RkFMU0UpDQplbnRyZW5hbWllbnRvIDwtIGRmW3Jlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdDQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdDQpgYGANCg0KIyBQYXNvIDUuIENvbnN0cnVpciBlbCBtb2RlbG8gU1ZNIExpbmVhcg0KYGBge3J9DQptb2RlbG8gPC0gc3ZtKHRhcmdldCB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLCBrZXJuZWwgPSAibGluZWFyIikNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG8gPC0gcHJlZGljdChtb2RlbG8sZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmEgPC0gcHJlZGljdChtb2RlbG8scHJ1ZWJhKQ0KYGBgDQoNCiMgUGFzbyA2LiBNYXRyaXogZGUgQ29uZnVzacOzbg0KYGBge3J9DQptY3JlIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bywgZW50cmVuYW1pZW50byR0YXJnZXQpICMgbWF0cml6IGRlIGNvbmZ1c2nDs24gZGVsIHJlc3VsdGFkbyBkZWwgZW50cmVuYW1pZW50bw0KbWNyZQ0KbWNycCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYSxwcnVlYmEkdGFyZ2V0KSAjIG1hdHJpeiBkZSBjb25mdXNpw7NuIGRlbCByZXN1bHRhZG8gZGUgbGEgcHJ1ZWJhDQptY3JwDQoNCg0KcmVzdWx0YWRvcyA8LSBkYXRhLmZyYW1lKCJTVk0gTGluZWFsIiA9IGMobWNyZSRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwJG92ZXJhbGxbIkFjY3VyYWN5Il0pKQ0Kcm93bmFtZXMocmVzdWx0YWRvcykgPC0gYygiUHJlY2lzaW9uIGRlIGVudHJlbmFtaWVudG8iLCAiUHJlY2lzaW9uIGRlIHBydWViYSIpDQpyZXN1bHRhZG9zDQpgYGANCg0KIyBQYXNvIDcuIE9idGVuZXIgcHJlZGljY2nDs24NCmBgYHtyfQ0KcGFjaWVudGUgPC0gZGF0YS5mcmFtZSgNCiAgYWdlID0gNTIsDQogIHNleCA9IDEsDQogIGNwID0gMCwNCiAgdHJlc3RicHMgPSAxMjUsDQogIGNob2wgPSAyMTIsDQogIGZicyA9IDAsDQogIHJlc3RlY2cgPSAxLA0KICB0aGFsYWNoID0gMTY4LA0KICBleGFuZyA9IDAsDQogIG9sZHBlYWsgPSAxLA0KICBzbG9wZSA9IDEsDQogIGNhID0gMCwNCiAgdGhhbCA9IDMNCikNCmBgYA0KDQoNCiMgUGFzbyA4LiBIYWNlciBsYSBwcmVkaWNjacOzbg0KYGBge3J9DQpwcmVkaWNjaW9uIDwtIHByZWRpY3QobW9kZWxvLCBwYWNpZW50ZSkNCg0KaWYocHJlZGljY2lvbiA9PSAxKSB7DQogIHByaW50KCJUaWVuZSBlbmZlcm1lZGFkIGNhcmTDrWFjYSIpDQp9IGVsc2Ugew0KICBwcmludCgiTm8gdGllbmUgZW5mZXJtZWRhZCBjYXJkw61hY2EiKQ0KfQ0KYGBgDQojIENvbmNsdXNpw7NuDQoNCkVuIGNvbmNsdXNpw7NuLCBsYSBNw6FxdWluYSBkZSBWZWN0b3JlcyBkZSBTb3Byb3RlIGVzIHVuYSBoZXJyYW1pZW50YSByb2J1c3RhIHBhcmEgbGEgcHJlZGljY2nDs24gZGUgZGnDoWdub3N0aWNvIGVuIGVuZmVybWVkYWQgY2FyZGlhY2EuIA==