# ==========================================================
# Estructura Base Proyectos
# ==========================================================
# Autor: Natalia Valeria Torrico Saavedra
# Fecha: 2024/08/2024
# Descripcion: Este script realiza una estructura base para
# la elaboracion de los codigos.
# ==========================================================
# 1. Clean Global Enviroment -------------------------------
remove(list = ls())
# 2. Cargar Librerias --------------------------------------
library(tidyverse) # Conjunto de herramientas
## Warning: package 'tidyverse' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'tibble' was built under R version 4.3.3
## Warning: package 'tidyr' was built under R version 4.3.3
## Warning: package 'readr' was built under R version 4.3.3
## Warning: package 'purrr' was built under R version 4.3.3
## Warning: package 'dplyr' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## Warning: package 'lubridate' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# para la ciencia de datos
# 3. Set Working Directory ---------------------------------
setwd("C:/Users/natur/Desktop/Proyectos de Estadística")
# 4. Cargas Datos Necesarios -------------------------------
load("mydata2.RData")
# 5. Preparacion de Datos ----------------------------------
x <- mydata2$x2 #Variable
y <- mydata2$y2 #Variable
n <- length(x) #Tamaño de la muestra
# 6. Desarrollo del Ejercicio ------------------------------
# 6.1. Calcular las medias de x e y
mean.x <- sum(x)/n #Media aritmetica mediante formula
mean(x) #Media aritmetica mediante RStudio
## [1] 9
mean(x) == mean.x #Verificacion de igualdad
## [1] TRUE
mean.y <- sum(y)/n #Media aritmetica mediante formula
mean(y) #Media aritmetica mediante RStudio
## [1] 7.500909
mean(y) == mean.y #Verificacion de igualdad
## [1] TRUE
# 6.2. Calcular desviacion estandar
sd.x <- sqrt((sum((x-mean.x)^2))/(n-1))
sd(x)
## [1] 3.316625
sd(x) == sd.x
## [1] TRUE
sd.y <- sqrt((sum((y-mean.y)^2))/(n-1))
sd(y)
## [1] 2.031657
sd(y) == sd.y
## [1] TRUE
# 6.3. Calculo del Coeficiente de Correlacion de Pearson
cor <- (sum((x-mean.x)*(y-mean.y))/((n-1)*sd.x*sd.y))
cor(x, y)
## [1] 0.8162365
cor == cor(x, y)
## [1] TRUE
# 7. Conclusiones -----------------------------------------
# Si no vemos los datos realmente no comprendemos ningun
# patron util de los mismos.
# ==========================================================
# FIN
# ==========================================================