This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
##
## 2 3
## 26 36
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
## [1] 139
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6924 -1.0548 -0.8772 -0.1082 11.2526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2093 0.2331 5.187 8.12e-07 ***
## target -0.4181 0.2949 -1.418 0.159
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.153 on 128 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.01546, Adjusted R-squared: 0.00777
## F-statistic: 2.01 on 1 and 128 DF, p-value: 0.1587
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
## [1] 198
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.089 -2.164 -1.659 1.603 14.180
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9351 0.2820 6.861 1.05e-10 ***
## target 1.5153 0.6593 2.298 0.0227 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.275 on 181 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.02836, Adjusted R-squared: 0.02299
## F-statistic: 5.282 on 1 and 181 DF, p-value: 0.02269
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
## [1] 157
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.116 -2.031 -1.651 1.024 14.619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.92236 0.28050 6.853 1.92e-10 ***
## target 0.02709 0.01309 2.069 0.0404 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.207 on 145 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.02867, Adjusted R-squared: 0.02197
## F-statistic: 4.279 on 1 and 145 DF, p-value: 0.04035
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
## [1] 137
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4853 -1.1230 -0.7836 0.3150 11.2764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1230 0.1934 5.807 4.87e-08 ***
## target -0.4356 0.1704 -2.556 0.0118 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.132 on 126 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.0493, Adjusted R-squared: 0.04175
## F-statistic: 6.534 on 1 and 126 DF, p-value: 0.01177
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
## [1] 198
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.995 -2.240 -1.619 1.450 13.976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4076 0.2672 9.009 2.9e-16 ***
## target -0.5969 0.4609 -1.295 0.197
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.307 on 181 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.009179, Adjusted R-squared: 0.003704
## F-statistic: 1.677 on 1 and 181 DF, p-value: 0.197
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4092 -1.1211 -0.6194 0.1067 11.0707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.416372 1.620854 -0.874 0.3839
## target -0.386601 0.293360 -1.318 0.1899
## baseline_age 0.041748 0.019214 2.173 0.0317 *
## educ.demo 0.008656 0.075083 0.115 0.9084
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.129 on 126 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.05163, Adjusted R-squared: 0.02905
## F-statistic: 2.287 on 3 and 126 DF, p-value: 0.08188
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1379 -2.1919 -0.8157 1.4402 13.8510
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.80335 2.02353 -1.385 0.167661
## target 1.29176 0.65119 1.984 0.048820 *
## baseline_age 0.09196 0.02395 3.839 0.000171 ***
## educ.demo -0.04976 0.09668 -0.515 0.607388
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.165 on 179 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.1023, Adjusted R-squared: 0.08724
## F-statistic: 6.798 on 3 and 179 DF, p-value: 0.0002295
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4227 -1.9465 -0.8388 1.1969 14.6534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.42595 2.12492 -1.142 0.255500
## target 0.02294 0.01282 1.789 0.075726 .
## baseline_age 0.08780 0.02539 3.459 0.000716 ***
## educ.demo -0.05930 0.10678 -0.555 0.579560
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.102 on 143 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.1037, Adjusted R-squared: 0.08486
## F-statistic: 5.513 on 3 and 143 DF, p-value: 0.001304
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1953 -1.1237 -0.6106 0.4160 11.0972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.94486 1.63680 -0.577 0.5648
## target -0.40027 0.17055 -2.347 0.0205 *
## baseline_age 0.03852 0.01922 2.004 0.0472 *
## educ.demo -0.01312 0.07572 -0.173 0.8627
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.115 on 124 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.07914, Adjusted R-squared: 0.05686
## F-statistic: 3.552 on 3 and 124 DF, p-value: 0.01645
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3698 -1.9593 -0.9768 1.2988 14.1849
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.37468 2.01010 -1.181 0.239
## target -0.70834 0.44594 -1.588 0.114
## baseline_age 0.09884 0.02400 4.118 5.83e-05 ***
## educ.demo -0.07414 0.09554 -0.776 0.439
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.178 on 179 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.0953, Adjusted R-squared: 0.08014
## F-statistic: 6.285 on 3 and 179 DF, p-value: 0.0004448
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7847 -0.8861 -0.3365 0.3987 6.4589
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.97367 1.36274 0.714 0.476
## target -0.37166 0.24050 -1.545 0.125
## baseline_age -0.02864 0.01809 -1.583 0.116
## educ.demo 0.08965 0.06240 1.437 0.153
## visit_avg_strp -1.36018 0.17208 -7.905 1.21e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.746 on 125 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.3677, Adjusted R-squared: 0.3475
## F-statistic: 18.17 on 4 and 125 DF, p-value: 8.665e-12
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7467 -1.5575 -0.6598 0.8868 11.0334
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.50982 1.59546 0.320 0.750
## target 0.80581 0.50611 1.592 0.113
## baseline_age 0.01102 0.01996 0.552 0.582
## educ.demo 0.04911 0.07539 0.651 0.516
## visit_avg_flk -2.23930 0.20390 -10.983 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.451 on 178 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.4649, Adjusted R-squared: 0.4529
## F-statistic: 38.66 on 4 and 178 DF, p-value: < 2.2e-16
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.616 -1.848 -0.540 1.017 12.769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.63661 2.06473 -0.793 0.429303
## target 0.02293 0.01238 1.852 0.066082 .
## baseline_age 0.06611 0.02533 2.609 0.010043 *
## educ.demo -0.02573 0.10357 -0.248 0.804161
## visit_avg_gonogo -0.82807 0.24502 -3.380 0.000937 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.995 on 142 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.1704, Adjusted R-squared: 0.147
## F-statistic: 7.291 on 4 and 142 DF, p-value: 2.276e-05
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4474 -1.1741 -0.6269 0.4688 10.5732
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.35811 1.60096 -0.224 0.82338
## target -0.31432 0.16808 -1.870 0.06384 .
## baseline_age 0.01979 0.01971 1.004 0.31725
## educ.demo 0.01053 0.07392 0.142 0.88697
## visit_avg_nback -0.64271 0.21844 -2.942 0.00389 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.052 on 123 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.1397, Adjusted R-squared: 0.1117
## F-statistic: 4.993 on 4 and 123 DF, p-value: 0.0009186
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 9 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.137 -1.493 -0.507 1.158 10.326
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.871500 1.687518 1.702 0.0906 .
## target -0.250740 0.359134 -0.698 0.4860
## baseline_age -0.018726 0.022418 -0.835 0.4047
## educ.demo 0.008259 0.076766 0.108 0.9144
## visit_avg_humi -2.392507 0.236390 -10.121 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.539 on 178 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.4258, Adjusted R-squared: 0.4129
## F-statistic: 32.99 on 4 and 178 DF, p-value: < 2.2e-16
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5130 -0.4135 -0.3842 -0.2164 3.1277
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.43325 0.10020 4.324 3.3e-05 ***
## target -0.06899 0.13078 -0.528 0.599
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8528 on 114 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.002435, Adjusted R-squared: -0.006315
## F-statistic: 0.2783 on 1 and 114 DF, p-value: 0.5988
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.82579 -0.58011 -0.52898 -0.01456 3.02501
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4967 0.1012 4.907 2.72e-06 ***
## target 0.4321 0.2800 1.543 0.125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.003 on 130 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.01799, Adjusted R-squared: 0.01043
## F-statistic: 2.381 on 1 and 130 DF, p-value: 0.1252
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6672 -0.5365 -0.5245 -0.0193 3.0168
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.527896 0.098915 5.337 5.34e-07 ***
## target 0.001719 0.006090 0.282 0.778
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9801 on 107 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.0007442, Adjusted R-squared: -0.008595
## F-statistic: 0.07969 on 1 and 107 DF, p-value: 0.7783
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 6 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 6 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9769 -0.4431 -0.3325 0.1024 2.9845
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.43834 0.08088 5.42 3.47e-07 ***
## target -0.17222 0.07145 -2.41 0.0176 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8318 on 112 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.04932, Adjusted R-squared: 0.04083
## F-statistic: 5.81 on 1 and 112 DF, p-value: 0.01756
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65868 -0.57980 -0.55362 -0.05214 2.95603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56066 0.09901 5.663 9.11e-08 ***
## target 0.05422 0.16236 0.334 0.739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.012 on 130 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.0008572, Adjusted R-squared: -0.006829
## F-statistic: 0.1115 on 1 and 130 DF, p-value: 0.7389
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6559 -0.4200 -0.3675 -0.1871 3.1194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.215528 0.672095 0.321 0.749
## target -0.065518 0.131744 -0.497 0.620
## baseline_age 0.005819 0.007998 0.727 0.468
## educ.demo -0.007588 0.031000 -0.245 0.807
##
## Residual standard error: 0.8582 on 112 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.007453, Adjusted R-squared: -0.01913
## F-statistic: 0.2803 on 3 and 112 DF, p-value: 0.8395
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9830 -0.6307 -0.3912 0.0182 3.1716
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.341016 0.719378 0.474 0.636
## target 0.310600 0.287522 1.080 0.282
## baseline_age 0.013396 0.008535 1.569 0.119
## educ.demo -0.037785 0.034793 -1.086 0.280
##
## Residual standard error: 0.9984 on 128 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.04241, Adjusted R-squared: 0.01996
## F-statistic: 1.89 on 3 and 128 DF, p-value: 0.1346
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.00429 -0.58427 -0.37267 0.01224 2.94564
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.127019 0.743942 0.171 0.8648
## target 0.001212 0.006226 0.195 0.8460
## baseline_age 0.016714 0.008730 1.915 0.0583 .
## educ.demo -0.036121 0.037639 -0.960 0.3394
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9703 on 105 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.0388, Adjusted R-squared: 0.01134
## F-statistic: 1.413 on 3 and 105 DF, p-value: 0.2432
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 6 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 6 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.95750 -0.45742 -0.33064 0.08797 2.91870
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.439476 0.672448 0.654 0.5148
## target -0.172139 0.073094 -2.355 0.0203 *
## baseline_age 0.002805 0.007896 0.355 0.7231
## educ.demo -0.010033 0.031035 -0.323 0.7471
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8385 on 110 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.05118, Adjusted R-squared: 0.0253
## F-statistic: 1.978 on 3 and 110 DF, p-value: 0.1215
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.07677 -0.63424 -0.41248 -0.00309 3.14822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.458987 0.725811 0.632 0.5283
## target 0.041266 0.164693 0.251 0.8026
## baseline_age 0.014587 0.008556 1.705 0.0906 .
## educ.demo -0.046580 0.034548 -1.348 0.1799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.003 on 128 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.03415, Adjusted R-squared: 0.01151
## F-statistic: 1.509 on 3 and 128 DF, p-value: 0.2154
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9301 -0.4243 -0.2779 -0.0136 3.2914
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.792278 0.671810 1.179 0.24079
## target -0.094747 0.127082 -0.746 0.45751
## baseline_age -0.009228 0.009046 -1.020 0.30993
## educ.demo 0.008741 0.030267 0.289 0.77329
## visit_avg_strp -0.348115 0.110044 -3.163 0.00201 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8257 on 111 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.08954, Adjusted R-squared: 0.05673
## F-statistic: 2.729 on 4 and 111 DF, p-value: 0.03274
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3427 -0.5587 -0.2243 0.1741 2.9560
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6612301 0.6467631 2.569 0.0114 *
## target 0.4875167 0.2480803 1.965 0.0516 .
## baseline_age -0.0148739 0.0084090 -1.769 0.0793 .
## educ.demo 0.0009297 0.0303877 0.031 0.9756
## visit_avg_flk -1.2127113 0.1772246 -6.843 2.95e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8568 on 127 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.3004, Adjusted R-squared: 0.2783
## F-statistic: 13.63 on 4 and 127 DF, p-value: 2.832e-09
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.96359 -0.57397 -0.36380 -0.02465 2.87684
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.183697 0.752958 0.244 0.808
## target 0.001496 0.006266 0.239 0.812
## baseline_age 0.015545 0.008996 1.728 0.087 .
## educ.demo -0.034785 0.037833 -0.919 0.360
## visit_avg_gonogo -0.059739 0.104925 -0.569 0.570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9735 on 104 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.04179, Adjusted R-squared: 0.004935
## F-statistic: 1.134 on 4 and 104 DF, p-value: 0.3447
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 6 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 6 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7765 -0.4568 -0.3498 0.1408 2.8093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.631075 0.672198 0.939 0.3499
## target -0.157921 0.072627 -2.174 0.0318 *
## baseline_age -0.002092 0.008218 -0.255 0.7995
## educ.demo -0.005316 0.030773 -0.173 0.8632
## visit_avg_nback -0.179200 0.094270 -1.901 0.0600 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8287 on 109 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.08163, Adjusted R-squared: 0.04792
## F-statistic: 2.422 on 4 and 109 DF, p-value: 0.05259
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5525 -0.5539 -0.2400 0.2044 3.5930
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.699960 0.683285 2.488 0.0141 *
## target 0.111213 0.147664 0.753 0.4528
## baseline_age -0.010757 0.008817 -1.220 0.2247
## educ.demo -0.026718 0.031062 -0.860 0.3913
## visit_avg_humi -0.662930 0.114872 -5.771 5.7e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.896 on 127 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.2348, Adjusted R-squared: 0.2107
## F-statistic: 9.743 on 4 and 127 DF, p-value: 6.619e-07
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 8 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3063 -1.8742 -0.5746 0.9410 8.8416
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5664 0.4927 7.238 7.61e-09 ***
## target -1.0085 0.5364 -1.880 0.0672 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.727 on 41 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.07938, Adjusted R-squared: 0.05693
## F-statistic: 3.535 on 1 and 41 DF, p-value: 0.06719
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3273 -2.4087 -0.7209 1.1515 11.6038
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2369 0.4176 10.146 <2e-16 ***
## target 0.6370 0.7789 0.818 0.416
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.456 on 92 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.007218, Adjusted R-squared: -0.003573
## F-statistic: 0.6689 on 1 and 92 DF, p-value: 0.4155
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9636 -2.2789 -0.7576 1.2889 12.0741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.22740 0.44063 9.594 2.5e-14 ***
## target 0.01508 0.01611 0.936 0.353
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.448 on 69 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.01253, Adjusted R-squared: -0.001786
## F-statistic: 0.8752 on 1 and 69 DF, p-value: 0.3528
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1927 -1.7240 -0.9632 0.9978 9.1420
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1665 0.4289 7.383 6.42e-09 ***
## target -0.8296 0.4151 -1.998 0.0527 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.746 on 39 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.09289, Adjusted R-squared: 0.06963
## F-statistic: 3.994 on 1 and 39 DF, p-value: 0.05268
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.712 -2.448 -0.932 1.444 12.079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6954 0.3860 12.164 <2e-16 ***
## target -1.2049 0.6821 -1.767 0.0806 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.411 on 92 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.03281, Adjusted R-squared: 0.02229
## F-statistic: 3.121 on 1 and 92 DF, p-value: 0.08063
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6526 -1.3820 -0.5789 0.8566 8.4348
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.13295 4.62909 -1.973 0.0556 .
## target -1.19140 0.52405 -2.273 0.0286 *
## baseline_age 0.12907 0.05288 2.441 0.0193 *
## educ.demo 0.30179 0.17312 1.743 0.0892 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.555 on 39 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.2316, Adjusted R-squared: 0.1725
## F-statistic: 3.919 on 3 and 39 DF, p-value: 0.01544
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0956 -2.3040 -0.5842 1.4391 11.9833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.12263 3.48888 -0.322 0.7484
## target 0.65568 0.79456 0.825 0.4114
## baseline_age 0.08034 0.04307 1.866 0.0654 .
## educ.demo 0.01470 0.15021 0.098 0.9222
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.426 on 90 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.04531, Adjusted R-squared: 0.01349
## F-statistic: 1.424 on 3 and 90 DF, p-value: 0.241
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1177 -2.1730 -0.6053 1.5491 12.4686
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.45754 3.92532 -0.117 0.9076
## target 0.01476 0.01618 0.912 0.3648
## baseline_age 0.08414 0.04743 1.774 0.0806 .
## educ.demo -0.04251 0.17848 -0.238 0.8125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.42 on 67 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.05683, Adjusted R-squared: 0.0146
## F-statistic: 1.346 on 3 and 67 DF, p-value: 0.267
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8042 -1.4783 -0.1843 0.9906 8.6822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.65681 4.77979 -2.230 0.03193 *
## target -1.10004 0.39119 -2.812 0.00783 **
## baseline_age 0.16093 0.05315 3.028 0.00447 **
## educ.demo 0.24509 0.17529 1.398 0.17038
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.508 on 37 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.2824, Adjusted R-squared: 0.2242
## F-statistic: 4.854 on 3 and 37 DF, p-value: 0.006021
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.755 -2.268 -0.735 1.636 12.387
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.150320 3.387390 -0.044 0.9647
## target -1.101743 0.682667 -1.614 0.1101
## baseline_age 0.074736 0.042796 1.746 0.0842 .
## educ.demo 0.003856 0.144905 0.027 0.9788
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.391 on 90 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.06514, Adjusted R-squared: 0.03398
## F-statistic: 2.09 on 3 and 90 DF, p-value: 0.107
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.422 -1.510 -0.199 1.135 5.154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.33997 4.04339 -1.568 0.12518
## target -1.19829 0.45032 -2.661 0.01135 *
## baseline_age 0.04425 0.05050 0.876 0.38639
## educ.demo 0.37659 0.15003 2.510 0.01645 *
## visit_avg_strp -1.18175 0.30700 -3.849 0.00044 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.195 on 38 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.4472, Adjusted R-squared: 0.389
## F-statistic: 7.685 on 4 and 38 DF, p-value: 0.0001221
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7199 -2.1299 -0.4642 1.4618 10.2572
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.911984 2.928661 0.311 0.756
## target 0.504972 0.663394 0.761 0.449
## baseline_age 0.005776 0.037806 0.153 0.879
## educ.demo 0.134380 0.126743 1.060 0.292
## visit_avg_flk -1.708855 0.269273 -6.346 9.01e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.859 on 89 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.3427, Adjusted R-squared: 0.3132
## F-statistic: 11.6 on 4 and 89 DF, p-value: 1.26e-07
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1536 -2.2865 -0.5532 1.4622 10.7132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.484424 3.846772 0.126 0.9002
## target 0.014032 0.015758 0.890 0.3765
## baseline_age 0.053440 0.048315 1.106 0.2727
## educ.demo 0.008919 0.175405 0.051 0.9596
## visit_avg_gonogo -0.805430 0.372655 -2.161 0.0343 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.33 on 66 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.1192, Adjusted R-squared: 0.06579
## F-statistic: 2.232 on 4 and 66 DF, p-value: 0.07489
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4813 -1.6343 -0.3701 1.1388 8.4878
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.76652 4.79588 -2.245 0.0310 *
## target -1.05038 0.39640 -2.650 0.0119 *
## baseline_age 0.14903 0.05499 2.710 0.0102 *
## educ.demo 0.27915 0.18002 1.551 0.1297
## visit_avg_nback -0.43992 0.49911 -0.881 0.3839
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.515 on 36 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.2976, Adjusted R-squared: 0.2195
## F-statistic: 3.813 on 4 and 36 DF, p-value: 0.01101
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3500 -2.0185 -0.5225 1.4843 9.7325
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.592872 2.910680 0.547 0.586
## target -0.816814 0.585541 -1.395 0.166
## baseline_age -0.009476 0.039313 -0.241 0.810
## educ.demo 0.116878 0.125357 0.932 0.354
## visit_avg_humi -2.363817 0.404282 -5.847 8.14e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.898 on 89 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.3246, Adjusted R-squared: 0.2942
## F-statistic: 10.69 on 4 and 89 DF, p-value: 4.024e-07
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range
## (`geom_point()`).
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2413 -0.5631 0.3429 0.4721 0.8278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5719 0.3111 5.053 0.00233 **
## target -0.5355 0.4872 -1.099 0.31384
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8091 on 6 degrees of freedom
## Multiple R-squared: 0.1676, Adjusted R-squared: 0.02887
## F-statistic: 1.208 on 1 and 6 DF, p-value: 0.3138
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1680 -0.5315 0.1330 0.4616 1.0767
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5698 0.2753 5.702 0.000453 ***
## target -0.8569 0.6337 -1.352 0.213285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7748 on 8 degrees of freedom
## Multiple R-squared: 0.186, Adjusted R-squared: 0.0843
## F-statistic: 1.829 on 1 and 8 DF, p-value: 0.2133
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.26155 -0.36836 0.02541 0.50693 1.16801
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4752 0.2460 5.998 0.000324 ***
## target 0.0179 0.0121 1.479 0.177328
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.761 on 8 degrees of freedom
## Multiple R-squared: 0.2148, Adjusted R-squared: 0.1166
## F-statistic: 2.188 on 1 and 8 DF, p-value: 0.1773
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.27462 -0.03043 0.24110 0.30086 0.53773
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7589 0.2639 6.665 0.000552 ***
## target -1.2104 0.5135 -2.357 0.056517 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.639 on 6 degrees of freedom
## Multiple R-squared: 0.4808, Adjusted R-squared: 0.3942
## F-statistic: 5.555 on 1 and 6 DF, p-value: 0.05652
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9761 -0.8436 0.2916 0.6388 1.0885
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3483 0.3682 3.662 0.00639 **
## target 0.1820 0.8772 0.207 0.84085
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8565 on 8 degrees of freedom
## Multiple R-squared: 0.00535, Adjusted R-squared: -0.119
## F-statistic: 0.04303 on 1 and 8 DF, p-value: 0.8408
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## -0.608754 0.314436 -0.428989 0.315998 0.560082 0.206408 -0.003339 -0.355843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.56099 2.98793 -1.526 0.2016
## target -0.66884 0.34895 -1.917 0.1278
## baseline_age 0.02622 0.03470 0.756 0.4919
## educ.demo 0.29147 0.10139 2.875 0.0453 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5559 on 4 degrees of freedom
## Multiple R-squared: 0.738, Adjusted R-squared: 0.5415
## F-statistic: 3.756 on 3 and 4 DF, p-value: 0.1168
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6446 -0.2692 -0.1451 0.1109 1.0437
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.37522 2.83597 -1.543 0.1738
## target -0.47577 0.53435 -0.890 0.4075
## baseline_age 0.03005 0.03132 0.959 0.3745
## educ.demo 0.25988 0.10252 2.535 0.0444 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6216 on 6 degrees of freedom
## Multiple R-squared: 0.6071, Adjusted R-squared: 0.4106
## F-statistic: 3.09 on 3 and 6 DF, p-value: 0.1113
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8952 -0.2015 -0.0722 0.0277 0.8840
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.489210 3.613504 -1.519 0.1795
## target -0.004294 0.014650 -0.293 0.7793
## baseline_age 0.031977 0.033916 0.943 0.3822
## educ.demo 0.314660 0.144505 2.178 0.0723 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6567 on 6 degrees of freedom
## Multiple R-squared: 0.5614, Adjusted R-squared: 0.3422
## F-statistic: 2.56 on 3 and 6 DF, p-value: 0.1509
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## -0.05722 0.01650 -0.20815 -0.11357 0.43071 0.17353 -0.50285 0.26106
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.50261 2.07191 -2.173 0.0955 .
## target -1.08123 0.31335 -3.451 0.0260 *
## baseline_age 0.04080 0.02357 1.731 0.1584
## educ.demo 0.24943 0.07074 3.526 0.0243 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3861 on 4 degrees of freedom
## Multiple R-squared: 0.8736, Adjusted R-squared: 0.7788
## F-statistic: 9.216 on 3 and 4 DF, p-value: 0.02866
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.96251 -0.15464 -0.09189 0.06077 0.90007
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.89849 2.98252 -1.642 0.1516
## target -0.04656 0.69092 -0.067 0.9485
## baseline_age 0.03023 0.03392 0.891 0.4072
## educ.demo 0.28626 0.10577 2.706 0.0353 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6611 on 6 degrees of freedom
## Multiple R-squared: 0.5555, Adjusted R-squared: 0.3333
## F-statistic: 2.499 on 3 and 6 DF, p-value: 0.1565
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## -0.447708 0.221111 -0.299996 0.001729 0.687063 0.258110 0.008499 -0.428808
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.26582 4.01592 -1.560 0.2166
## target -0.89521 0.49349 -1.814 0.1673
## baseline_age 0.04525 0.04598 0.984 0.3976
## educ.demo 0.33459 0.12471 2.683 0.0749 .
## visit_avg_strp 0.63377 0.90315 0.702 0.5334
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.595 on 3 degrees of freedom
## Multiple R-squared: 0.7749, Adjusted R-squared: 0.4749
## F-statistic: 2.583 on 4 and 3 DF, p-value: 0.2309
##
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## 0.165507 0.502905 -0.421661 -0.390476 0.358038 -0.009779 0.476402 -0.541796
## 9 10
## -0.246202 0.107063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.68482 3.52883 0.194 0.8538
## target 0.08515 0.53075 0.160 0.8788
## baseline_age -0.04747 0.04793 -0.990 0.3675
## educ.demo 0.22524 0.08699 2.589 0.0489 *
## visit_avg_flk -1.37176 0.71260 -1.925 0.1122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.516 on 5 degrees of freedom
## Multiple R-squared: 0.7743, Adjusted R-squared: 0.5938
## F-statistic: 4.289 on 4 and 5 DF, p-value: 0.07102
##
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8 9 10
## 0.1418 0.1013 -0.1656 -0.3500 0.1398 0.1833 0.5570 -0.3340 -0.4412 0.1676
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.808116 3.519769 0.798 0.4612
## target 0.006459 0.009963 0.648 0.5454
## baseline_age -0.060288 0.036645 -1.645 0.1608
## educ.demo 0.147131 0.106704 1.379 0.2264
## visit_avg_gonogo -1.054799 0.338065 -3.120 0.0262 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.419 on 5 degrees of freedom
## Multiple R-squared: 0.8512, Adjusted R-squared: 0.7321
## F-statistic: 7.15 on 4 and 5 DF, p-value: 0.02672
##
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## -0.23491 -0.03279 -0.09770 0.22934 0.26137 0.04982 -0.37341 0.19828
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.15755 1.89605 -2.193 0.1160
## target -0.57467 0.46746 -1.229 0.3066
## baseline_age 0.01325 0.02940 0.451 0.6827
## educ.demo 0.29967 0.07397 4.051 0.0271 *
## visit_avg_nback -0.43348 0.31760 -1.365 0.2656
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3502 on 3 degrees of freedom
## Multiple R-squared: 0.922, Adjusted R-squared: 0.8181
## F-statistic: 8.869 on 4 and 3 DF, p-value: 0.05189
##
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## 1 2 3 4 5 6 7 8 9 10
## -0.4077 0.6911 -0.1300 -0.5230 0.3552 -0.6085 0.7883 -0.1321 -0.2270 0.1938
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.995176 3.089676 -1.293 0.2525
## target 0.281469 0.756105 0.372 0.7250
## baseline_age -0.003982 0.047179 -0.084 0.9360
## educ.demo 0.331684 0.113891 2.912 0.0333 *
## visit_avg_humi -0.592370 0.571514 -1.036 0.3475
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6571 on 5 degrees of freedom
## Multiple R-squared: 0.6341, Adjusted R-squared: 0.3414
## F-statistic: 2.166 on 4 and 5 DF, p-value: 0.2093
##
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
df.baseline.analsyes.a2<-df.pe.a.baselinemeged %>%
filter(visit==1,
!is.na(max_dif_ftld_global)) #%>%
#group_by(unique_id) %>%
# slice(1)
lp.fml<-"max_dif_ftldbox~target"
for (i.raw in lst.pe) {
# lp.fml<-paste("ftldcdr_box.computed~target+baseline_age+educ.demo+",
# lst.pe.covari[grep(i.raw,lst.pe)])
df.pe.loop<-df.baseline.analsyes.mut%>%
mutate(target=UQ(sym(i.raw)))%>%
filter(!is.na(target)) %>%
group_by(unique_id, visit)%>%
mutate(rslice=1:n())%>%
filter(rslice==1) %>%
ungroup()
lm.pe.loop<-NA
lm.pe.loop= lm(formula = lp.fml,
data = df.pe.loop)
sum<-summary(lm.pe.loop)
print("##############################")
print("##############################")
print("##############################")
print("##############################")
print(i.raw)
print(sum)
print(ggplot(df.pe.loop, aes(x=target, y=max_dif_ftldbox))+
geom_point()+
geom_smooth(method="lm")+
ggtitle(label = i.raw)
)
print("##############################")
print("##############################")
print("##############################")
}
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3997 -0.3032 -0.2153 0.2597 0.7694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2763 0.1865 1.482 0.189
## target 0.1444 0.2920 0.494 0.639
##
## Residual standard error: 0.485 on 6 degrees of freedom
## Multiple R-squared: 0.03914, Adjusted R-squared: -0.121
## F-statistic: 0.2444 on 1 and 6 DF, p-value: 0.6386
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.58600 -0.15248 -0.09702 0.24622 0.55040
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1303 0.1305 0.999 0.3473
## target 0.6040 0.3005 2.010 0.0793 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3674 on 8 degrees of freedom
## Multiple R-squared: 0.3356, Adjusted R-squared: 0.2525
## F-statistic: 4.04 on 1 and 8 DF, p-value: 0.07927
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33052 -0.21549 -0.14155 -0.00482 0.91597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.215492 0.133160 1.618 0.144
## target -0.008216 0.006551 -1.254 0.245
##
## Residual standard error: 0.412 on 8 degrees of freedom
## Multiple R-squared: 0.1643, Adjusted R-squared: 0.05986
## F-statistic: 1.573 on 1 and 8 DF, p-value: 0.2452
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45248 -0.16511 -0.03077 0.19851 0.40899
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1209 0.1372 0.881 0.4122
## target 0.7215 0.2671 2.702 0.0355 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3323 on 6 degrees of freedom
## Multiple R-squared: 0.5489, Adjusted R-squared: 0.4737
## F-statistic: 7.3 on 1 and 6 DF, p-value: 0.03549
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3079 -0.2466 -0.2184 0.1128 0.8351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3079 0.1914 1.609 0.146
## target -0.2036 0.4560 -0.446 0.667
##
## Residual standard error: 0.4452 on 8 degrees of freedom
## Multiple R-squared: 0.02431, Adjusted R-squared: -0.09765
## F-statistic: 0.1993 on 1 and 8 DF, p-value: 0.6671
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2737 -0.1942 -0.1583 -0.1133 10.8241
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.035127 0.770877 -0.046 0.964
## target 0.049443 0.136885 0.361 0.719
## baseline_age 0.004036 0.009142 0.442 0.660
## educ.demo -0.003803 0.036042 -0.106 0.916
##
## Residual standard error: 1.048 on 135 degrees of freedom
## Multiple R-squared: 0.002316, Adjusted R-squared: -0.01986
## F-statistic: 0.1044 on 3 and 135 DF, p-value: 0.9574
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2692 -0.2851 -0.1637 -0.0122 10.0036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.519961 0.588992 -0.883 0.378444
## target 0.707532 0.192258 3.680 0.000302 ***
## baseline_age 0.002675 0.007069 0.378 0.705526
## educ.demo 0.025399 0.028050 0.905 0.366330
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9577 on 193 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.06788, Adjusted R-squared: 0.05339
## F-statistic: 4.685 on 3 and 193 DF, p-value: 0.003502
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9626 -0.2680 -0.2032 -0.1310 10.4954
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.142662 0.718534 -0.199 0.843
## target 0.006597 0.004117 1.603 0.111
## baseline_age 0.004345 0.008636 0.503 0.616
## educ.demo 0.004638 0.036071 0.129 0.898
##
## Residual standard error: 1.078 on 152 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.02047, Adjusted R-squared: 0.001133
## F-statistic: 1.059 on 3 and 152 DF, p-value: 0.3686
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7601 -0.2471 -0.1605 -0.0487 10.3978
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.278183 0.778879 0.357 0.722
## target -0.172457 0.081842 -2.107 0.037 *
## baseline_age 0.001971 0.009135 0.216 0.829
## educ.demo -0.010924 0.036341 -0.301 0.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 133 degrees of freedom
## Multiple R-squared: 0.03376, Adjusted R-squared: 0.01197
## F-statistic: 1.549 on 3 and 133 DF, p-value: 0.2048
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3264 -0.2332 -0.1921 -0.1521 10.8037
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.175433 0.602075 -0.291 0.771
## target -0.027237 0.135630 -0.201 0.841
## baseline_age 0.004647 0.007310 0.636 0.526
## educ.demo 0.006320 0.028566 0.221 0.825
##
## Residual standard error: 0.9907 on 193 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.002676, Adjusted R-squared: -0.01283
## F-statistic: 0.1726 on 3 and 193 DF, p-value: 0.9148
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4110 -0.2507 -0.0994 0.0967 9.7483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.71655 0.75987 0.943 0.347383
## target 0.05582 0.13040 0.428 0.669265
## baseline_age -0.01584 0.01013 -1.564 0.120118
## educ.demo 0.01473 0.03467 0.425 0.671579
## visit_avg_strp -0.37000 0.09623 -3.845 0.000185 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9985 on 134 degrees of freedom
## Multiple R-squared: 0.1015, Adjusted R-squared: 0.07464
## F-statistic: 3.783 on 4 and 134 DF, p-value: 0.006012
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2382 -0.2909 -0.1633 -0.0019 10.0109
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.572097 0.599187 -0.955 0.34089
## target 0.715196 0.193234 3.701 0.00028 ***
## baseline_age 0.004051 0.007594 0.533 0.59433
## educ.demo 0.023460 0.028369 0.827 0.40928
## visit_avg_flk 0.039396 0.078400 0.503 0.61589
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9596 on 192 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0691, Adjusted R-squared: 0.04971
## F-statistic: 3.563 on 4 and 192 DF, p-value: 0.007895
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9612 -0.3424 -0.1938 -0.0093 10.4581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2877830 0.7201480 -0.400 0.690
## target 0.0066157 0.0040945 1.616 0.108
## baseline_age 0.0075993 0.0088180 0.862 0.390
## educ.demo 0.0009099 0.0359475 0.025 0.980
## visit_avg_gonogo 0.1391305 0.0852596 1.632 0.105
##
## Residual standard error: 1.072 on 151 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.03744, Adjusted R-squared: 0.01194
## F-statistic: 1.468 on 4 and 151 DF, p-value: 0.2146
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5596 -0.2692 -0.1661 -0.0265 10.3310
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.407942 0.783948 0.520 0.6037
## target -0.150110 0.083563 -1.796 0.0747 .
## baseline_age -0.002097 0.009670 -0.217 0.8286
## educ.demo -0.005890 0.036480 -0.161 0.8720
## visit_avg_nback -0.131696 0.104478 -1.261 0.2097
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.037 on 132 degrees of freedom
## Multiple R-squared: 0.04525, Adjusted R-squared: 0.01632
## F-statistic: 1.564 on 4 and 132 DF, p-value: 0.1876
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5983 -0.2938 -0.1679 -0.0644 10.6420
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.163739 0.623743 0.263 0.7932
## target 0.012967 0.136339 0.095 0.9243
## baseline_age -0.003525 0.008425 -0.418 0.6761
## educ.demo 0.013425 0.028614 0.469 0.6395
## visit_avg_humi -0.167903 0.087830 -1.912 0.0574 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9839 on 192 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0213, Adjusted R-squared: 0.0009149
## F-statistic: 1.045 on 4 and 192 DF, p-value: 0.3853
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
df.baseline.analsyes.a2<-df.pe.a.baselinemeged %>%
filter(visit==1,
!is.na(max_dif_ftld_global)) %>%
filter(baseline_ftldcdr_glob<=0.5)#%>%
#group_by(unique_id) %>%
# slice(1)
lp.fml<-"max_dif_ftldbox~target"
for (i.raw in lst.pe) {
# lp.fml<-paste("ftldcdr_box.computed~target+baseline_age+educ.demo+",
# lst.pe.covari[grep(i.raw,lst.pe)])
df.pe.loop<-df.baseline.analsyes.mut%>%
mutate(target=UQ(sym(i.raw)))%>%
filter(!is.na(target)) %>%
group_by(unique_id, visit)%>%
mutate(rslice=1:n())%>%
filter(rslice==1) %>%
ungroup()
lm.pe.loop<-NA
lm.pe.loop= lm(formula = lp.fml,
data = df.pe.loop)
sum<-summary(lm.pe.loop)
print("##############################")
print("##############################")
print("##############################")
print("##############################")
print(i.raw)
print(sum)
print(ggplot(df.pe.loop, aes(x=target, y=max_dif_ftldbox))+
geom_point()+
geom_smooth(method="lm")+
ggtitle(label = i.raw)
)
print("##############################")
print("##############################")
print("##############################")
}
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3997 -0.3032 -0.2153 0.2597 0.7694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2763 0.1865 1.482 0.189
## target 0.1444 0.2920 0.494 0.639
##
## Residual standard error: 0.485 on 6 degrees of freedom
## Multiple R-squared: 0.03914, Adjusted R-squared: -0.121
## F-statistic: 0.2444 on 1 and 6 DF, p-value: 0.6386
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.58600 -0.15248 -0.09702 0.24622 0.55040
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1303 0.1305 0.999 0.3473
## target 0.6040 0.3005 2.010 0.0793 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3674 on 8 degrees of freedom
## Multiple R-squared: 0.3356, Adjusted R-squared: 0.2525
## F-statistic: 4.04 on 1 and 8 DF, p-value: 0.07927
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33052 -0.21549 -0.14155 -0.00482 0.91597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.215492 0.133160 1.618 0.144
## target -0.008216 0.006551 -1.254 0.245
##
## Residual standard error: 0.412 on 8 degrees of freedom
## Multiple R-squared: 0.1643, Adjusted R-squared: 0.05986
## F-statistic: 1.573 on 1 and 8 DF, p-value: 0.2452
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45248 -0.16511 -0.03077 0.19851 0.40899
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1209 0.1372 0.881 0.4122
## target 0.7215 0.2671 2.702 0.0355 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3323 on 6 degrees of freedom
## Multiple R-squared: 0.5489, Adjusted R-squared: 0.4737
## F-statistic: 7.3 on 1 and 6 DF, p-value: 0.03549
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3079 -0.2466 -0.2184 0.1128 0.8351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3079 0.1914 1.609 0.146
## target -0.2036 0.4560 -0.446 0.667
##
## Residual standard error: 0.4452 on 8 degrees of freedom
## Multiple R-squared: 0.02431, Adjusted R-squared: -0.09765
## F-statistic: 0.1993 on 1 and 8 DF, p-value: 0.6671
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.18808 -0.08182 -0.04306 -0.00001 1.33659
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.379720 0.164206 2.312 0.0225 *
## target 0.059022 0.031146 1.895 0.0605 .
## baseline_age -0.001027 0.001948 -0.527 0.5991
## educ.demo -0.017966 0.007607 -2.362 0.0198 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2145 on 119 degrees of freedom
## Multiple R-squared: 0.07343, Adjusted R-squared: 0.05007
## F-statistic: 3.143 on 3 and 119 DF, p-value: 0.02783
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5112 -0.1490 -0.0887 -0.0283 3.2827
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.219913 0.327808 0.671 0.5034
## target 0.226366 0.130566 1.734 0.0852 .
## baseline_age 0.002895 0.003872 0.748 0.4560
## educ.demo -0.019290 0.015930 -1.211 0.2280
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4652 on 136 degrees of freedom
## Multiple R-squared: 0.04468, Adjusted R-squared: 0.02361
## F-statistic: 2.12 on 3 and 136 DF, p-value: 0.1005
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3270 -0.1526 -0.1005 -0.0355 3.3151
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.281243 0.328734 0.856 0.394
## target 0.002809 0.002395 1.173 0.243
## baseline_age 0.004227 0.003882 1.089 0.279
## educ.demo -0.026301 0.016595 -1.585 0.116
##
## Residual standard error: 0.4385 on 111 degrees of freedom
## Multiple R-squared: 0.03726, Adjusted R-squared: 0.01124
## F-statistic: 1.432 on 3 and 111 DF, p-value: 0.2373
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15306 -0.07580 -0.04968 -0.00544 1.36283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4056912 0.1722218 2.356 0.0202 *
## target 0.0045987 0.0185967 0.247 0.8051
## baseline_age -0.0009093 0.0020098 -0.452 0.6518
## educ.demo -0.0182935 0.0079620 -2.298 0.0234 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.219 on 117 degrees of freedom
## Multiple R-squared: 0.04921, Adjusted R-squared: 0.02483
## F-statistic: 2.018 on 3 and 117 DF, p-value: 0.1151
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3106 -0.1534 -0.1010 -0.0435 3.3085
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.324235 0.329874 0.983 0.3274
## target 0.033386 0.075255 0.444 0.6580
## baseline_age 0.003569 0.003911 0.913 0.3631
## educ.demo -0.026275 0.015796 -1.663 0.0985 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4699 on 136 degrees of freedom
## Multiple R-squared: 0.02498, Adjusted R-squared: 0.003468
## F-statistic: 1.161 on 3 and 136 DF, p-value: 0.327
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.19291 -0.07872 -0.04253 -0.00174 1.28888
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.439720 0.171758 2.560 0.0117 *
## target 0.055792 0.031219 1.787 0.0765 .
## baseline_age -0.002519 0.002324 -1.084 0.2808
## educ.demo -0.016504 0.007697 -2.144 0.0341 *
## visit_avg_strp -0.032898 0.028072 -1.172 0.2436
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2141 on 118 degrees of freedom
## Multiple R-squared: 0.08409, Adjusted R-squared: 0.05304
## F-statistic: 2.708 on 4 and 118 DF, p-value: 0.03348
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7296 -0.1338 -0.0819 -0.0147 3.3746
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.452058 0.341936 1.322 0.1884
## target 0.259682 0.129906 1.999 0.0476 *
## baseline_age -0.001876 0.004443 -0.422 0.6736
## educ.demo -0.013527 0.015968 -0.847 0.3984
## visit_avg_flk -0.198520 0.094140 -2.109 0.0368 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4594 on 135 degrees of freedom
## Multiple R-squared: 0.07514, Adjusted R-squared: 0.04774
## F-statistic: 2.742 on 4 and 135 DF, p-value: 0.03114
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3367 -0.1638 -0.0921 -0.0222 3.2819
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.216518 0.332401 0.651 0.516
## target 0.002552 0.002400 1.063 0.290
## baseline_age 0.005258 0.003967 1.326 0.188
## educ.demo -0.026668 0.016563 -1.610 0.110
## visit_avg_gonogo 0.055400 0.045854 1.208 0.230
##
## Residual standard error: 0.4376 on 110 degrees of freedom
## Multiple R-squared: 0.04987, Adjusted R-squared: 0.01532
## F-statistic: 1.443 on 4 and 110 DF, p-value: 0.2246
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21605 -0.09536 -0.03636 0.00249 1.28807
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.462589 0.170736 2.709 0.00776 **
## target 0.011175 0.018463 0.605 0.54620
## baseline_age -0.002458 0.002080 -1.182 0.23975
## educ.demo -0.016597 0.007847 -2.115 0.03655 *
## visit_avg_nback -0.053764 0.022928 -2.345 0.02073 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2149 on 116 degrees of freedom
## Multiple R-squared: 0.09224, Adjusted R-squared: 0.06094
## F-statistic: 2.947 on 4 and 116 DF, p-value: 0.02318
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5478 -0.1711 -0.0825 0.0276 3.1839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.661856 0.340460 1.944 0.0540 .
## target 0.062042 0.073827 0.840 0.4022
## baseline_age -0.003059 0.004412 -0.693 0.4894
## educ.demo -0.022282 0.015422 -1.445 0.1508
## visit_avg_humi -0.167358 0.056483 -2.963 0.0036 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4571 on 135 degrees of freedom
## Multiple R-squared: 0.08451, Adjusted R-squared: 0.05739
## F-statistic: 3.116 on 4 and 135 DF, p-value: 0.0173
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
df.baseline.analsyes.a2<-df.pe.a.baselinemeged %>%
filter(visit==1,
!is.na(max_dif_ftld_global)) %>%
filter(baseline_ftldcdr_glob>=0.5)#%>%
#group_by(unique_id) %>%
# slice(1)
lp.fml<-"max_dif_ftldbox~target"
for (i.raw in lst.pe) {
# lp.fml<-paste("ftldcdr_box.computed~target+baseline_age+educ.demo+",
# lst.pe.covari[grep(i.raw,lst.pe)])
df.pe.loop<-df.baseline.analsyes.mut%>%
mutate(target=UQ(sym(i.raw)))%>%
filter(!is.na(target)) %>%
group_by(unique_id, visit)%>%
mutate(rslice=1:n())%>%
filter(rslice==1) %>%
ungroup()
lm.pe.loop<-NA
lm.pe.loop= lm(formula = lp.fml,
data = df.pe.loop)
sum<-summary(lm.pe.loop)
print("##############################")
print("##############################")
print("##############################")
print("##############################")
print(i.raw)
print(sum)
print(ggplot(df.pe.loop, aes(x=target, y=max_dif_ftldbox))+
geom_point()+
geom_smooth(method="lm")+
ggtitle(label = i.raw)
)
print("##############################")
print("##############################")
print("##############################")
}
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3997 -0.3032 -0.2153 0.2597 0.7694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2763 0.1865 1.482 0.189
## target 0.1444 0.2920 0.494 0.639
##
## Residual standard error: 0.485 on 6 degrees of freedom
## Multiple R-squared: 0.03914, Adjusted R-squared: -0.121
## F-statistic: 0.2444 on 1 and 6 DF, p-value: 0.6386
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.58600 -0.15248 -0.09702 0.24622 0.55040
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1303 0.1305 0.999 0.3473
## target 0.6040 0.3005 2.010 0.0793 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3674 on 8 degrees of freedom
## Multiple R-squared: 0.3356, Adjusted R-squared: 0.2525
## F-statistic: 4.04 on 1 and 8 DF, p-value: 0.07927
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33052 -0.21549 -0.14155 -0.00482 0.91597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.215492 0.133160 1.618 0.144
## target -0.008216 0.006551 -1.254 0.245
##
## Residual standard error: 0.412 on 8 degrees of freedom
## Multiple R-squared: 0.1643, Adjusted R-squared: 0.05986
## F-statistic: 1.573 on 1 and 8 DF, p-value: 0.2452
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45248 -0.16511 -0.03077 0.19851 0.40899
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1209 0.1372 0.881 0.4122
## target 0.7215 0.2671 2.702 0.0355 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3323 on 6 degrees of freedom
## Multiple R-squared: 0.5489, Adjusted R-squared: 0.4737
## F-statistic: 7.3 on 1 and 6 DF, p-value: 0.03549
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3079 -0.2466 -0.2184 0.1128 0.8351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3079 0.1914 1.609 0.146
## target -0.2036 0.4560 -0.446 0.667
##
## Residual standard error: 0.4452 on 8 degrees of freedom
## Multiple R-squared: 0.02431, Adjusted R-squared: -0.09765
## F-statistic: 0.1993 on 1 and 8 DF, p-value: 0.6671
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6815 -0.5114 -0.3891 -0.2557 10.6028
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.894198 2.884887 -0.310 0.758
## target -0.013577 0.350329 -0.039 0.969
## baseline_age 0.008654 0.033985 0.255 0.800
## educ.demo 0.049377 0.114154 0.433 0.668
##
## Residual standard error: 1.801 on 43 degrees of freedom
## Multiple R-squared: 0.005594, Adjusted R-squared: -0.06378
## F-statistic: 0.08064 on 3 and 43 DF, p-value: 0.9702
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5583 -0.5077 -0.2791 0.0310 9.7694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.87750 1.23646 -0.710 0.4796
## target 0.79714 0.29348 2.716 0.0078 **
## baseline_age -0.00207 0.01588 -0.130 0.8965
## educ.demo 0.07235 0.05322 1.360 0.1771
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.3 on 99 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0751, Adjusted R-squared: 0.04707
## F-statistic: 2.679 on 3 and 99 DF, p-value: 0.05108
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2544 -0.5189 -0.3755 -0.2255 10.2999
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.151072 1.645649 -0.092 0.927
## target 0.006480 0.006952 0.932 0.354
## baseline_age -0.002265 0.020349 -0.111 0.912
## educ.demo 0.042109 0.075428 0.558 0.578
##
## Residual standard error: 1.512 on 73 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01882, Adjusted R-squared: -0.0215
## F-statistic: 0.4668 on 3 and 73 DF, p-value: 0.7063
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4328 -0.6062 -0.3539 0.1117 9.2492
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.09019 2.89212 -0.723 0.4740
## target -0.61216 0.26590 -2.302 0.0265 *
## baseline_age 0.02098 0.03320 0.632 0.5309
## educ.demo 0.07785 0.11234 0.693 0.4922
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.735 on 41 degrees of freedom
## Multiple R-squared: 0.1182, Adjusted R-squared: 0.05373
## F-statistic: 1.833 on 3 and 41 DF, p-value: 0.1563
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5630 -0.4306 -0.3475 -0.2077 10.6247
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.207654 1.258261 -0.165 0.869
## target -0.051899 0.263675 -0.197 0.844
## baseline_age -0.001684 0.016490 -0.102 0.919
## educ.demo 0.043065 0.054101 0.796 0.428
##
## Residual standard error: 1.348 on 99 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.006561, Adjusted R-squared: -0.02354
## F-statistic: 0.218 on 3 and 99 DF, p-value: 0.8837
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_strp"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8087 -0.5528 -0.2558 0.1388 9.4371
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.362071 2.848533 0.127 0.899
## target -0.005796 0.337890 -0.017 0.986
## baseline_age -0.024542 0.036535 -0.672 0.505
## educ.demo 0.069236 0.110516 0.626 0.534
## visit_avg_strp -0.478014 0.232413 -2.057 0.046 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.737 on 42 degrees of freedom
## Multiple R-squared: 0.09659, Adjusted R-squared: 0.01055
## F-statistic: 1.123 on 4 and 42 DF, p-value: 0.3588
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_flk"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4800 -0.5271 -0.2816 0.0007 9.7717
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.975141 1.240925 -0.786 0.43387
## target 0.808456 0.293803 2.752 0.00706 **
## baseline_age 0.002472 0.016557 0.149 0.88163
## educ.demo 0.063463 0.054015 1.175 0.24287
## visit_avg_flk 0.115601 0.119225 0.970 0.33463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.301 on 98 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.08388, Adjusted R-squared: 0.04649
## F-statistic: 2.243 on 4 and 98 DF, p-value: 0.06983
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_gonogo"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3387 -0.6343 -0.2671 -0.0192 10.1664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.488819 1.629693 -0.300 0.7651
## target 0.007114 0.006850 1.039 0.3025
## baseline_age 0.007164 0.020668 0.347 0.7299
## educ.demo 0.028454 0.074592 0.381 0.7040
## visit_avg_gonogo 0.291211 0.158133 1.842 0.0697 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.488 on 72 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.06296, Adjusted R-squared: 0.0109
## F-statistic: 1.209 on 4 and 72 DF, p-value: 0.3143
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_nback"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0779 -0.6800 -0.3645 0.1338 9.2079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.08307 2.91948 -0.714 0.4797
## target -0.59225 0.27152 -2.181 0.0351 *
## baseline_age 0.01599 0.03505 0.456 0.6507
## educ.demo 0.08949 0.11590 0.772 0.4446
## visit_avg_nback -0.16793 0.34543 -0.486 0.6295
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.751 on 40 degrees of freedom
## Multiple R-squared: 0.1234, Adjusted R-squared: 0.03577
## F-statistic: 1.408 on 4 and 40 DF, p-value: 0.2488
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"
## [1] "pe_humi"
##
## Call:
## lm(formula = lp.fml, data = df.pe.loop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7518 -0.4446 -0.3483 -0.1721 10.5505
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15887 1.26211 -0.126 0.900
## target -0.03113 0.26546 -0.117 0.907
## baseline_age -0.00630 0.01751 -0.360 0.720
## educ.demo 0.05175 0.05529 0.936 0.352
## visit_avg_humi -0.14101 0.17749 -0.794 0.429
##
## Residual standard error: 1.35 on 98 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01292, Adjusted R-squared: -0.02737
## F-statistic: 0.3207 on 4 and 98 DF, p-value: 0.8635
## `geom_smooth()` using formula = 'y ~ x'
## [1] "##############################"
## [1] "##############################"
## [1] "##############################"